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Preface 

Systematic AI incident response requires capabilities that rarely exist in combination within 
single organizations or disciplines. This white paper draws on years of professional experience in 
operational testing of complex systems, financial crime enforcement, and AI safety assessment to 
address this gap. Work as a board member of the AI Incident Database, development of incident 
taxonomies and reporting frameworks, and analysis of over 1,000 AI incidents demonstrated that 
proven approaches from other complex systems domains can be adapted to meet AI-specific 
challenges. 

These domains contribute distinct but complementary capabilities. Operational testing and 
evaluation provides methodologies for assessing complex systems in real-world contexts, 
understanding system-of-systems interactions, and systematically collecting and analyzing 
incidents so that known system problems can be tested. Financial crime enforcement 
demonstrates how structured reporting enables pattern recognition across organizations. It also 
reveals that an ecosystem of incident collectors, reporters, and response processes is necessary to 
detect malicious activity, understand systemic harm, and effectively analyze patterns. Direct work 
with AI incidents through the AI Incident Database, international standards development 
through European Telecommunications Standards Institute (ETSI) and Organisation for 
Economic Co-operation and Development (OECD) working groups, and red-team assessments 
for frontier models, including GPT-4 exposes the specific gaps in current AI incident response 
approaches. 

The framework presented here synthesizes insights from all three domains, adapting proven 
approaches rather than inventing new methodologies. It emphasizes systems-thinking, 
context-focused evaluation, data usability, and the recognition that other complex systems 
domains have already solved many challenges AI incident response now faces. 

 

 



Executive Summary 

As AI-enabled systems integrate into critical applications across defense, financial services, 
healthcare, and other sectors, organizations face an urgent need for systematic incident response 
processes. Most lack the frameworks, procedures, and infrastructure to respond effectively when 
these systems fail or cause harm. This white paper presents a comprehensive framework 
adapting proven reliability engineering practices from complex systems domains to AI-specific 
characteristics. The framework provides both a generalizable seven-step process and tailored 
guidance for different stakeholders, enabling coordinated ecosystem response while allowing 
customization for specific operational contexts. 

AI-enabled systems are complex systems1 exhibiting characteristics familiar from aerospace, 
financial services, healthcare, and critical infrastructure: interconnected architectures, 
context-dependent behavior, cascading failure potential, and nascent system-level interactions. 
Like these other complex systems domains, AI systems benefit from systematic incident 
response processes. However, AI-specific characteristics including non-deterministic behavior,2 
adaptive responses, and transitory states require adapting rather than directly applying existing 
approaches. 

Current Gaps in AI Incident Response 

Organizations deploy AI-enabled systems to improve efficiency, enable new capabilities, and 
support critical decisions. Yet when these systems fail or cause harm, most lack systematic 
processes for responding effectively, learning from incidents, and improving reliability over time.3 

AI-enabled systems exhibit probabilistic outputs, context-dependent behavior, and complex 
system-level interactions that complicate incident response. Existing approaches prove 
inadequate: model testing frameworks focus on pre-deployment validation rather than 
operational response, while cybersecurity incident response addresses adversarial attacks but not 
systematic errors, performance degradation, or unintentional harms. 

Without systematic approaches, organizations cannot build institutional knowledge about 
failures, learn from incidents to prevent recurrence, or detect patterns visible only through 
analysis of multiple incidents. As AI systems become more autonomous and interconnected, 
these gaps become increasingly critical. 

A Framework Grounded in Proven Practices 

This white paper presents a systematic framework developed by adapting established 
methodologies from domains where incident response already works effectively. Rather than 
inventing new approaches, the framework draws on: 

●​ Aviation safety for systematic investigation, identifying root causes in complex systems 
●​ Financial crime enforcement for standardized cross-organizational reporting, enabling 

pattern recognition while protecting proprietary information 

3 Engineering a safer world: Systems thinking applied to safety (Engineering Systems). NG Leveson. Mit Press 
Cambridge, 2011. 3854, 2011 

2 Russell, S. J., & Norvig, P. (2022). Artificial Intelligence: A Modern Approach 
1 Meadows, D.H. (2008) Thinking in Systems: A Primer. Chelsea Green, White River Junction 

 



●​ Healthcare adverse event reporting for blame-free investigation cultures surfacing 
human factors 

●​ Cybersecurity incident response4 5 for rapid response protocols, clear escalation paths, 
and pre-defined containment procedures that enable swift action under pressure 

●​ Reliability engineering6 for tracking improvement over time through quantitative 
metrics 

These proven approaches can be adapted for AI-specific challenges including non-deterministic 
behavior, context-dependent failures, and system-of-systems interactions. The framework 
complements existing AI incident and governance frameworks by providing operational detail 
for implementing the incident response capabilities these standards require. 

The Seven-Step Process 

The framework centers on seven interconnected steps forming a complete incident response 
cycle. The process is intentionally generalizable, enabling organizations to adapt severity criteria, 
investigation methodologies, and verification approaches to their specific contexts. Additionally, 
organizations may drop reorganize to repeat some of the steps. 

1.​ Detect: Identify the incident through monitoring and user feedback 
2.​ Assess: Evaluate severity and potential impact using established criteria 
3.​ Stabilize: Execute pre-planned procedures to contain harm 
4.​ Report & Document: Document incident details using standardized structures and 

notify stakeholders 
5.​ Investigate & Analyze: Determine root cause through systematic analysis 
6.​ Correct: Implement solutions to address root causes, reduce recurrence, and mitigate 

realized harm 
7.​ Verify: Test and validate corrections, then monitor for effectiveness 

Each step integrates response actions with a required preparedness infrastructure. This 
reflects a critical insight: effective incident response depends fundamentally on preparation 
before incidents occur. Organizations cannot respond systematically without pre-planned 
severity frameworks, stabilization procedures, trained personnel, monitoring infrastructure, 
investigation capabilities, and verification processes. 

The Ecosystem Approach 

Organizations can implement incident response independently, but ecosystem coordination 
unlocks capabilities no single entity can achieve alone. Multiple stakeholders bring 
complementary capabilities: 

●​ AI developers possess deep technical knowledge of model internals but cannot see 
deployment contexts 

6 "IEEE Guide for General Principles of Reliability Analysis of Nuclear Power Generating Station Safety Systems," 
in ANSI/IEEE Std 352-1987 , vol., no., pp.1-118, 1987, doi: 10.1109/IEEESTD.1987.101069. 

5 Cybersecurity & Infrastructure Security Agency (CISA), Incident Response Plan (IRP) Basics 

4 National Institute of Standards and Technology. Guide for conducting risk assessments. NIST Special Publication 
800-30 Revision 1, U.S. Department of Commerce, 2012. URL 
https:/nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-30r1.pdf.  
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●​ Deployers understand operational environments but may lack expertise for technical 
root cause analysis 

●​ Users experience real-world system performance but may not recognize AI involvement 
in decisions 

●​ Oversight bodies can aggregate cross-organizational patterns, but depend on incident 
reports from others for visibility 

●​ Independent evaluators provide transparency through public databases and research 
●​ Assurance organizations offer verification that complements organizational 

self-assessment 

Coordination enables capabilities impossible for individual organizations. Individual 
organizations see only incidents affecting their own users or systems. When incidents are 
aggregated across organizations, patterns become visible that no single entity could detect: 
systematic errors affecting specific populations, cascading failures propagating through 
interconnected systems, and sophisticated attacks distributed across multiple targets. This shared 
visibility accelerates learning about failure modes and spreads effective practices across the field. 
 
Building this ecosystem requires standardized reporting structures.7 Complex patterns of 
harm8 remain invisible without structured, analyzable data that enables computational analysis 
across organizations. Financial crime enforcement demonstrates this works in practice: 
Suspicious Activity Reports enable government analysis of patterns across thousands of 
institutions while protecting the proprietary information of individual financial entities. These 
standardized structured reports9 10 enable collective defense while protecting competitive 
interests.  

Implementation and Integration 

Most organizations already have incident management capabilities through IT service 
management, cybersecurity operations, or risk management functions. Organizations can extend 
these existing capabilities for AI-specific characteristics rather than building entirely new parallel 
processes. Existing incident tracking systems, escalation procedures, and communication 
protocols provide a foundation that can be adapted with AI-specific severity criteria, root cause 
analysis methodologies, and verification approaches. 

Organizations deploying AI systems should focus on detection infrastructure, severity 
assessment frameworks accounting for AI-specific factors, and standardized incident 
documentation procedures. Developers need technical response capabilities including rapid 
rollback mechanisms and model-level root cause analysis. Regulators should define clear 
reporting requirements while enabling information sharing that protects proprietary information. 
Standards bodies can develop technical frameworks for incident reporting, while professional 
organizations can facilitate information sharing. 

10 OECD (2025), “Towards a common reporting framework for AI incidents”, OECD Artificial Intelligence Papers, 
No. 34, OECD Publishing, Paris, https://doi.org/10.1787/f326d4ac-en. 

9 Ren Bin Lee Dixon and Heather Frase, "AI Incidents: Key Components for a Mandatory Reporting Regime," 
(Center for Security and Emerging Technology, January 2025), https://doi.org/10.51593/20240023  

8 Mia Hoffmann and Heather Frase, "Adding Structure to AI Harm: An Introduction to CSET's AI Harm 
Framework" (Center for Security and Emerging Technology, July 2023), https://doi.org/10.51593/20230022.  

7 An upcoming companion paper will provide details for designing standardized reporting structures for AI 
incidents. 
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The frameworks and processes presented here can be implemented immediately. Organizations 
need not wait for perfect solutions or complete ecosystem development. Begin with capabilities 
appropriate to current systems and contexts. Organizations cannot respond effectively without a 
preparedness infrastructure established before incidents occur. Participate in ecosystem 
development by contributing to standardized reporting, sharing lessons learned where 
appropriate, and coordinating with other stakeholders. 

The Path Forward 

As AI systems become more capable, autonomous, and integrated into critical functions, the 
consequences of inadequate incident response increase. Systematic incident response is essential 
for continuous reliability improvement, regulatory compliance, and demonstrating due diligence. 
Organizations that implement these capabilities now will be better positioned to deploy AI safely, 
respond to incidents effectively, and show measurable improvement in system reliability over 
time. 

 

 



Section 1: Introduction: Why AI Needs a New Kind of Incident 
Response 

Organizations deploying AI-enabled systems face a fundamental challenge: traditional incident 
response approaches designed for deterministic software or standalone models prove inadequate 
when AI systems fail or cause harm. This section establishes why AI requires systematic incident 
response (1.1), describes what this framework provides to address that need (1.2), and defines 
core concepts, including what constitutes an AI incident and the range of incidents this 
framework addresses (1.3). 

1.1 The Urgency of AI Incident Response 

As AI-enabled systems become increasingly integrated into critical applications across defense, 
financial services, healthcare, law enforcement, and other sectors, the need for robust incident 
response processes has never been more urgent. Organizations deploy AI-enabled systems to 
improve efficiency, enable new capabilities, and support critical decisions. Yet when these 
systems fail or cause harm, many organizations lack systematic processes for responding 
effectively, learning from incidents, and improving reliability over time. 

The consequences of inadequate incident response extend beyond individual failures. Without 
systematic approaches, organizations cannot: 

●​ Build institutional knowledge about how their AI systems fail and why 
●​ Learn from incidents to prevent recurrence 
●​ Demonstrate improvement in system improvement to stakeholders and regulators 
●​ Detect patterns that emerge only through analysis of multiple incidents 
●​ Coordinate responses when incidents cascade across organizational boundaries 

These challenges arise because AI-enabled systems are fundamentally complex systems. Like 
aerospace, financial services, and healthcare systems, they exhibit interconnected architectures, 
context-dependent behaviors, and complex system-level interactions. However, AI systems 
introduce novel characteristics, including non-deterministic behavior,2 adaptive responses, and 
transitory states that require adapting rather than directly applying existing approaches. 

Traditional incident response approaches designed for simpler systems prove inadequate when 
confronted with these complex system characteristics, particularly in AI systems incorporating 
agentic behaviors, multi-step reasoning, and tool use. 

Software incident response processes assume deterministic behavior and reproducible 
failures. AI-enabled systems exhibit neither. The same input may produce different outputs. 
Incidents that occur in production may be impossible to reproduce in testing environments. 
Failures appear gradually through context-dependent performance degradation rather than 
manifesting as discrete, reproducible events. 

Model testing frameworks focus on pre-deployment evaluation but provide limited guidance 
for responding to incidents in operational settings. They emphasize validating performance 
before deployment rather than establishing processes for detecting, analyzing, and correcting 
failures that emerge during real-world use. Organizations need both pre-deployment testing and 
operational incident response capabilities. 

 



Cybersecurity incident response effectively addresses adversarial attacks and security breaches 
but does not cover the full scope of AI incidents. Output quality issues and context-dependent 
failures, performance degradation, system behavioral concerns, and unintentional harms from 
system limitations all demand response processes adapted for AI-specific characteristics while 
building on proven cybersecurity methodologies. 

The stakes increase as AI capabilities advance. More capable systems create more consequential 
failures. More autonomous systems operate with less direct human oversight. More 
interconnected systems create cascading failure risks across organizational boundaries. 
Organizations cannot continue responding to AI incidents through ad hoc processes designed 
for traditional software or standalone machine learning models. 

1.2 What This Document Provides 

This white paper presents a comprehensive framework for AI incident response that adapts 
proven reliability engineering practices from complex systems domains to AI-specific 
characteristics. The framework addresses critical gaps limiting current incident response 
capabilities while building on methodologies that have proven effective across multiple sectors. It 
also provides stakeholder-specific recommendations for implementing AI incident response 
processes. 

1.2.1 A Systematic Seven-Step Process 

The framework centers on seven interconnected steps forming a complete incident response 
cycle: Detect, Assess, Stabilize, Report, Investigate, Correct, and Verify. Each step integrates 
response actions with required preparedness infrastructure. This design reflects a critical insight 
from mature domains: systematic incident response requires investments made before incidents 
occur, not capabilities improvised during crises. Section 3.2 details the specific Preparedness 
Recommendations for each step. 

Section 3 provides details for each step. Throughout the section, comparative tables illustrate 
how each step operates in both existing complex system domains (particularly financial services 
fraud detection and transaction monitoring) and in agentic AI systems. These side-by-side 
examples demonstrate how proven approaches from financial crime enforcement, aviation safety, 
and other established domains can be adapted for AI-specific characteristics, including 
non-deterministic behavior, context-dependent failures, and system-of-systems interactions. 

1.2.2 Integration with Existing Frameworks and Processes 

Most organizations already have incident management capabilities through IT service 
management, cybersecurity operations, or risk management functions. This framework shows 
how to extend those capabilities for AI-specific characteristics rather than building entirely new 
parallel processes. 

The framework complements existing standards, including NIST AI Risk Management 
Framework, NIST Cybersecurity Framework, and ISO standards for information security and 
risk management. Where these frameworks identify what organizations should do, this 
framework provides operational detail for how to implement incident response capabilities. 
Section 3.3 addresses integration approaches, showing how organizations can leverage existing 
processes while adapting them for AI. 

 



1.2.3 Ecosystem Coordination Structures 

While organizations can implement effective incident response independently, coordination 
across multiple stakeholders enables capabilities impossible for individual organizations. Each 
stakeholder brings distinct capabilities to the ecosystem. No single stakeholder possesses 
complete visibility or capabilities across the AI value chain. Section 4 describes six stakeholder 
categories and explains why their coordination is essential for effective incident response. 
Different stakeholders operate at different system levels; developers address component-level 
issues, deployers handle system-level problems, and oversight bodies analyze patterns across 
organizations. This distributed capability structure makes ecosystem coordination necessary 
rather than optional. 

Section 4 clarifies roles and responsibilities across these six stakeholder categories, showing how 
coordination enables capabilities impossible for individual organizations: pattern recognition 
across incidents, shared learning about failure modes, and systematic reliability improvement 
across the field. The framework describes what each stakeholder can and cannot do at each step 
of the incident response process, explaining when to engage external parties and how to 
coordinate effectively. 

Building this coordinated ecosystem requires infrastructure that does not yet exist in 
mature form. The framework identifies what needs to be built and how different stakeholders 
can contribute to ecosystem development. 

1.2.4 Standardized Reporting Foundations 

Complex patterns of harm remain invisible without structured, analyzable data. Individual 
organizations cannot detect three critical patterns alone. Section 2 analyzes diffuse harm 
distributed across organizations, intersectional effects targeting specific demographic 
combinations, and cascading failures through interconnected systems. The section also examines 
how sophisticated actors adapt techniques from financial crime, such as structuring and financial 
mules, to evade detection. Together, these patterns demonstrate why standardized reporting 
structures7 represent a foundational requirement for effective AI incident response.10 

1.2.5 Stakeholder-Specific Recommendations 

Section 5 provides concrete action recommendations for each stakeholder group for supporting 
the AI incident response ecosystem. Rather than generic implementation guidance, this section 
specifies what AI deployers, AI developers, assurance organizations, standards bodies, regulators, 
and professional organizations should prioritize. 

Deployers should prioritize detection infrastructure, severity assessment, and integration with 
existing IT processes. Developers should build technical response capabilities and coordinate 
with deployers. Assurance organizations should develop verification capabilities and audit 
programs. Standards bodies should harmonize international frameworks and create practitioner 
resources. Regulators should establish clear requirements, enable information sharing, and 
coordinate across jurisdictions. Professional organizations should develop information sharing 
and training programs. 

 



These stakeholder-specific recommendations show how different entities can begin building 
incident response capabilities and contributing to ecosystem development based on their unique 
authorities and capabilities. 

1.3 Defining AI Incidents 

An AI incident occurs when there is harm that can be directly or indirectly linked to the behavior 
of an AI system.8 11 The harm can be experienced by people, organizations, systems, operations, 
human rights, property, communities, or the environment. This definition, formalized by the 
Organisation for Economic Co-operation and Development (OECD), provides a foundation for 
systematic incident response while remaining flexible enough to accommodate diverse 
deployment contexts and evolving AI capabilities. 

Some organizations may also choose to apply their AI incident response process to AI hazards, 
vulnerabilities, flaws, or near-misses. All of these are conditions that could lead to harm. In 
contrast, incidents are events that did occur. While this framework focuses primarily on 
responding to actual incidents where harm occurred, organizations with mature incident 
response processes often expand to include proactive analysis of conditions that could lead to 
harm. 

1.3.1 Scope of Harm 

The breadth of entities that can experience harm reflects the reality that AI systems operate in 
complex sociotechnical contexts, where incidents can simultaneously have multiple types of 
harm. 

Tangible harm includes observable, verifiable impacts such as physical injury, financial loss, or 
property damage. A medical diagnosis system providing incorrect recommendations that lead to 
wrong treatment causes tangible harm. An AI agricultural management system providing 
incorrect irrigation or fertilization recommendations causes tangible harm through crop failures 
and financial losses for farmers. An autonomous vehicle system failing to detect obstacles that 
result in a collision causes tangible harm. 

Intangible harm includes impacts that cannot be directly observed but cause real damage. 
Privacy violations, reputational harm, psychological harm, erosion of trust in institutions, and 
damage to professional credibility all constitute intangible harms.8 11 An AI system trained on 
customer service conversations inadvertently memorizing and reproducing sensitive personal 
information causes intangible harm through privacy violations, even when no specific individual 
can demonstrate direct injury. An AI risk assessment system used in consequential decisions 
exhibiting systematic performance variations across population segments creates legal liability 
risks, even when individual detention decisions appear procedurally correct. 

Both tangible and intangible harms demand a systematic incident response. Organizations 
sometimes focus incident response on tangible harms because they are easier to measure and 
verify. However, intangible harms often prove more widespread and more difficult to detect 
without structured analysis across many incidents. 

11 OECD (2024), “Defining AI incidents and related terms”, OECD Artificial Intelligence Papers, No. 16, OECD 
Publishing, Paris, https://doi.org/10.1787/d1a8d965-en. 
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1.3.2 Incidents, Hazards, and Near-Misses 

Incidents are events that did occur and did cause harm.8 12 This distinguishes incidents from 
related concepts that organizations may also want to track: 

Hazards are conditions that could lead to harm but have not yet caused actual harm. A 
vulnerability in an AI system that adversaries could exploit is a hazard. Organizations benefit 
from finding and addressing hazards before they result in incidents. 

Vulnerabilities are specific weaknesses in AI systems that could be exploited or could lead to 
failures. A prompt injection vulnerability in a customer service chatbot is a vulnerability 
regardless of whether it has been exploited. Vulnerabilities are a type of hazard, but hazards that 
do not exploit a system weakness are generally not vulnerabilities. 

Near-misses are events where harm almost occurred but was avoided through luck, human 
intervention, or system safeguards. An autonomous vehicle system that nearly failed to detect a 
pedestrian but corrected at the last moment is a near-miss. 

Some organizations may choose to apply their AI incident response process to hazards, 
vulnerabilities, and near-misses. Proactive analysis of these conditions can prevent actual 
incidents. However, this framework focuses primarily on responding to actual incidents where 
harm occurred, recognizing that organizations with mature incident response processes often 
expand to include proactive hazard analysis. 

1.3.3 Security and Safety Dimensions 

AI incidents encompass both security and safety dimensions, and practitioners must recognize 
that many incidents involve both simultaneously. Traditional organizational structures often 
separate security teams focused on adversarial threats from quality and reliability teams focused 
on performance and safety. AI incidents frequently require coordinated actions across these 
organizational functions. 

Security-related incidents involve harm resulting from the deliberate exploitation of system 
vulnerabilities,13 including: 

●​ Adversarial attacks where malicious actors manipulate inputs to cause misclassifications 
or bypass safety constraints 

●​ Data poisoning where attackers inject malicious data into training sets to compromise 
model behavior 

●​ Unauthorized access to AI systems, models, or training data 
●​ Prompt injection attacks where users embed malicious instructions in prompt text to 

bypass system guardrails 
●​ Model extraction where adversaries query systems to reconstruct proprietary models 

 

13 Two good resources for vulnerabilities are MITRE’s Adversarial Threat Landscape for Artificial-Intelligence 
Systems (ATLASTM) and ATT&CH®. These can be found respectively at https://atlas.mitre.org/ and 
https://attack.mitre.org/  

12  Heather Frase and Owen Daniels, "Understanding AI Harms: An Overview," Center for Security and Emerging 
Technology, August 11, 2023, https://cset.georgetown.edu/article/understanding-ai-harms-an-overview/.  
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Safety-related incidents involve unintentional harms: 

●​ Performance failures where systems fail to meet functional or non-functional 
requirements, causing incorrect decisions, denied services, or degraded outcomes  

●​ Performance inconsistencies where systems exhibit systematic variations across user 
populations, causing disparate service quality or outcomes that may trigger regulatory 
scrutiny  

●​ Unexpected system behaviors in contexts not adequately represented in testing, 
causing harm through unanticipated actions or decisions  

●​ Human factors issues where inadequate training, confusing interfaces, or misaligned 
incentives lead to harmful system use or misinterpretation of outputs 

Many real-world incidents do not fall neatly into security or safety categories but represent 
hybrid events demanding coordinated response. A prompt injection attack (security) that causes 
an AI customer service system to provide harmful or dangerous recommendations (safety) 
requires both security containment and output quality safeguards. An adversarial attack (security) 
that degrades model performance (safety) causing service denial for legitimate users requires 
both security hardening and reliability improvement.14 

Effective incident response requires bridging these traditional organizational divides. 
Cybersecurity teams bring expertise in rapid containment, forensic investigation, and 
coordination with security operations centers. AI safety and reliability teams bring expertise in 
quality assurance, fairness analysis, and operational performance. Both perspectives are essential 
for comprehensive incident response. 

1.3.4 Complexity Range 

AI incidents range from straightforward cases involving a single system and affected entity to 
complex, multifaceted events with cascading effects across systems and multiple affected 
populations.12 

Simple incidents involve: 

●​ Single AI system 
●​ Clear failure mode 
●​ Limited affected population 
●​ Contained impact 
●​ Straightforward root cause 

Complex incidents involve: 

●​ Multiple interconnected AI systems 
●​ Cascading failures across system boundaries 
●​ Large or diverse affected populations 

14 Depending upon specific incident characteristics, organizations may classify misuse as a security or safety incident. 
Misuse occurs when someone uses an AI system for harmful purposes, which may or may not involve exploiting 
vulnerabilities. A user employing a text generation system as designed to create phishing emails represents misuse 
without security compromise (primarily a safety incident). An attacker exploiting prompt injection to bypass 
guardrails represents both security attack and misuse. This distinction matters for incident response: pure misuse 
may require strengthening usage policies and guardrails rather than patching security vulnerabilities, while 
security-enabled misuse requires both security remediation and safety improvements. 

 



●​ Systemic impacts 
●​ Multiple contributing factors 
●​ Novel behaviors from system interactions 

Organizations should prepare incident response processes capable of handling both simple and 
complex incidents. Response procedures appropriate for simple incidents may prove inadequate 
when confronted with cascading failures across organizational boundaries or intersectional 
harms affecting specific demographic combinations. 

This framework addresses the full complexity range, providing structured approaches that scale 
from straightforward single-system failures to complex system-of-systems incidents requiring 
coordination across organizational boundaries. 

 

 



Section 2: The Challenge: Fragmented Capabilities and Missing 
Foundations 

Effective AI incident response requires foundational structures that most organizations currently 
lack. This section first explains why AI-enabled systems present qualitatively different challenges 
from traditional software, requiring adapted approaches to proven incident response 
methodologies (2.1). It then identifies six critical missing structures that limit organizations' 
ability to respond systematically: severity classification frameworks, escalation criteria, 
investigation capabilities, standardized reporting structures, reliability metrics, and clear 
delineation of responsibilities (2.2). Addressing these gaps is essential for moving from ad hoc 
incident handling to systematic reliability improvement. 

2.1 AI-Enabled Systems as Complex Systems 

 

Figure 1: AI-enabled systems exhibit characteristics of complex systems with novel attributes. 

 

AI-enabled systems represent a qualitatively different challenge from traditional software 
engineering or standalone machine learning models. They are complex systems that share 
characteristics with other complex systems in aerospace, healthcare, financial services, and critical 
infrastructure domains, while introducing novel attributes that require adapted approaches. Like 

 



these other complex systems, AI-enabled systems can benefit from established incident response 
frameworks that have proven effective across multiple domains. 

Understanding AI-specific characteristics is essential for adapting the execution of proven 
response processes. Traditional software incident response often assumes deterministic behavior, 
reproducible incidents, and clear system boundaries. AI-enabled systems often violate these 
assumptions. Their behavior shifts with context, incidents may be non-reproducible, and their 
boundaries extend across multiple interconnected components. These characteristics require 
adapting how we execute each step of the incident response process. The overall incident 
response framework remains constant. The specific techniques and tools for executing each step 
should account for AI's adaptive behavior, context-dependence, and uncertainty. 

AI-enabled systems exhibit several characteristics that distinguish them from traditional software: 

●​ Dynamic and adaptive behavior 
●​ Interconnected architectures 
●​ Complexity with unknown consequences 
●​ User-dependent performance 
●​ Transitory and self-directed operations 
●​ Distributed and tool-mediated autonomy 
●​ Novel failure modes 

Dynamic and Adaptive 
The functionality of AI-enabled systems shifts with context. Unlike traditional software with 
deterministic behavior, AI-enabled systems adapt their responses based on input variations, 
environmental conditions, and learned patterns. A financial audit assistant may perform 
adequately on standard transactions but fail unpredictably when encountering novel transaction 
structures. This adaptability creates challenges for incident response because the same system 
may exhibit different behaviors under similar conditions, complicating both incident 
reproduction and root cause analysis. 

Interconnected 
Modern AI-enabled systems, particularly agentic systems, exhibit multi-step behaviors and 
extensive tool use. They interact with databases, external APIs, other AI-enabled systems, and 
human users in complex workflows. An AI system designed to assist with financial analysis 
might query internal databases, fetch market data from external sources, invoke calculation 
engines, and coordinate with other specialized AI agents. 

This interconnectedness means that failures and incidents can cascade across system boundaries, 
and root causes may lie far from where symptoms first appear. Consider an agentic customer 
service system using Model Context Protocol (MCP) to access multiple tools: a product 
database, order tracking system, refund processing system, and knowledge base. If the order 
tracking system experiences delays, the agent might make decisions based on incomplete 
information, leading to incorrect promises to customers. The incident manifests as customer 
service failures, but the root cause spans multiple systems and their interactions. 

Complex with Unknown Consequences 
AI-enabled systems can produce incidents with unknown consequences and exhibit brittle failure 
modes. Unlike traditional software, where edge cases can be systematically detailed and tested, 
AI-enabled systems can create incidents in unexpected ways when encountering novel inputs or 
combinations of conditions. These incidents may manifest subtly and develop gradually rather 

 



than catastrophically. While traditional software incidents are typically discrete events with clear 
onset, AI-enabled system incidents can accumulate over time, with harm accruing across multiple 
user interactions before triggering incident response. 

User Dependent 
The suitability of AI-enabled systems shifts with real-world context and user characteristics. A 
system that performs adequately for expert users with deep domain knowledge may fail 
dramatically when deployed to novice users who lack context to recognize problematic outputs. 
Security properties may differ substantially between trusted users (authenticated employees with 
legitimate access) and untrusted users (external actors potentially attempting adversarial attacks). 
An AI legal research assistant that works well for experienced attorneys who can evaluate 
outputs critically may create incidents when used by pro se litigants who treat its outputs as 
authoritative legal advice. 

Transitory and Self-Directed 
Unlike other complex systems, AI-enabled systems (particularly generative systems and agentic 
AI) can be transitory and self-directed. Their internal states may be ephemeral, with no persistent 
record of reasoning processes that led to particular outputs. This makes post-incident forensics 
challenging: when an AI system's behavior results in harm, investigators may struggle to 
reconstruct why. AI-enabled systems can initiate actions without explicit human authorization 
for each step, following high-level directives through multi-step reasoning processes that may 
take unexpected paths. 

Distributed and Tool-Mediated Autonomy 
Agents increasingly rely on tools, APIs, and Model Context Protocols (MCPs) to perform 
actions. Both the agent and its tools may exhibit non-deterministic behavior, making the system's 
overall operation difficult to predict or audit. When an agentic system has access to email tools, 
database tools, and external API tools, the combinations of tool uses and sequences of 
operations grow exponentially. This distributed autonomy means that monitoring should extend 
beyond the agent itself to encompass the entire ecosystem of tools it can invoke. 

Novel Failure Modes 
These characteristics represent genuinely new challenges for incident response. New types of 
incidents continue to occur as AI capabilities expand. Prompt injection attacks (security attacks 
where malicious users embed instructions in prompt text) have no direct analog in traditional 
software. Data leakage, hallucinations, sycophancy, and agent handoff failures in multi-agent 
workflows exemplify failure modes that require incident response processes designed explicitly 
for AI-enabled systems. 

 

 



2.2 Missing Foundational Structures 

 

 

Figure 2: Six commonly missing foundational structures that organizations need to support 
systematic AI incident response. 

Despite the critical importance of effective incident response, most organizations currently lack 
several foundational structures that enable systematic response and continuous improvement. 
These gaps limit organizations' ability to respond consistently, learn from incidents, and build 
institutional knowledge. Addressing these missing structures is essential for moving from ad hoc 
incident handling to systematic reliability improvement. 

2.2.1 Severity Classification Systems 

The Gap 
Organizations lack severity classification frameworks tailored to their operational contexts and 
AI-specific failure modes. Traditional software severity classifications based on system availability 
and data integrity prove insufficient for AI-enabled systems, for which subtle performance 
degradation,  harmful or fabricated outputs, or privacy leakage can cause serious harm without 
catastrophic failure. 

 

 



What's Needed 
Organizations should develop severity classification frameworks by: 

●​ Adapting established standards (such as MIL-STD-882E) that define severity levels: 
catastrophic, critical, marginal, and negligible 

●​ Customizing severity definitions for their specific operational contexts and deployment 
scenarios 

●​ Creating scoring criteria that account for AI-specific incident characteristics 
●​ Developing assessment templates enabling consistent severity evaluation 
●​ Training personnel on applying criteria to AI incidents 

Section 3.2.2 (Assess) provides guidance on adapting established severity frameworks for 
AI-enabled systems. 

2.2.2 Escalation Criteria and Response Procedures 

The Gap 
Clear escalation criteria and response procedures for different incident types are underdeveloped. 
Organizations struggle to decide when AI incidents warrant executive notification versus routine 
handling, when to engage external experts, when regulatory reporting becomes mandatory, and 
who has the authority to make containment decisions. Without pre-established criteria, escalation 
decisions become ad hoc, potentially delaying critical responses or creating unnecessary alarm 
about minor issues. 

What's Needed 
Pre-defined escalation frameworks that account for: 

●​ Incident severity level 
●​ Stakeholder impact (customers, employees, partners) 
●​ Regulatory requirements and mandatory reporting thresholds 
●​ System criticality and business dependencies 
●​ Potential for escalation or cascading harm 

These frameworks enable consistent decision-making under pressure, when time for deliberation 
is limited and consequences of delay may be significant. 

2.2.3 Investigation Teams and Resources 

The Gap 
Effective investigation of AI incidents requires specialized expertise beyond traditional software 
debugging. AI incidents may be non-reproducible, have root causes in training data or 
fine-tuning processes far removed from deployment, or arise from complex interactions between 
components that function correctly in isolation. Organizations typically lack pre-established 
investigation capabilities with appropriate multidisciplinary teams. 

What's Needed 
Investigation teams with: 

●​ Data science expertise: Understanding model architectures, training processes, 
fine-tuning approaches 

●​ Domain expertise: Deep knowledge of the application area where AI operates 

 



●​ Operational expertise: Understanding deployment contexts, user populations, 
real-world constraints 

●​ Human factors expertise: Analyzing how users interact with systems, training 
adequacy, interface design 

●​ Systems engineering expertise: Understanding component interactions, system-level 
behaviors, cascading effects 

These capabilities should be established before deploying AI systems, not assembled after 
incidents occur. 

2.2.4 Standardized Technical Reporting Structures 

The Gap 
Individual organizations responding to AI incidents within their own systems cannot detect 
specific critical patterns. These patterns become visible only through aggregation and analysis 
across organizations.  

The European Telecommunications Standards Institute (ETSI) and OECD are developing 
common reporting standards for AI incidents.10 Research organizations have proposed hybrid 
reporting frameworks combining structured technical specifications with narrative descriptions. 
However, broad adoption remains limited. Without standardized reporting, incident data remains 
siloed, preventing identification of patterns across organizations, systems, or deployment 
contexts. 

What's Needed 
Hybrid frameworks combining: 

●​ Structured technical specifications: Prescribed fields, controlled vocabularies, 
consistent formats enabling computational analysis 

●​ Narrative descriptions: Free-text context capturing circumstances, nuances, and novel 
factors 

●​ Privacy and security protections: Multiple report versions with appropriate access 
controls 

●​ Cross-organizational compatibility: Enable aggregation and pattern recognition while 
protecting proprietary information 

Why This Gap is Particularly Critical 
This gap affects the ecosystem's ability to learn collectively from incidents. Complex patterns of 
harm and misuse remain invisible when analyzing individual incidents in isolation. Diffuse harms 
distributed across many users and organizations become visible only through statistical analysis 
of aggregated datasets. Intersectional effects targeting specific demographic combinations 
require cross-tabulation of multiple variables. Cascading failures propagating through 
interconnected systems demand data capturing, timing relationships, and system 
interdependencies across organizational boundaries. Sophisticated misuse patterns deliberately 
obscure detection through techniques like structuring (breaking malicious objectives into many 
innocuous-appearing requests distributed across time and accounts). 

Proven Approaches from Other Domains 
Financial crime enforcement demonstrates that standardized reporting enabling pattern 
recognition works in practice. FinCEN (Financial Crimes Enforcement Network) aggregates 
Suspicious Activity Reports from financial institutions using highly structured formats 

 



combining prescribed fields with controlled vocabularies alongside free-text contextual 
information. This hybrid structure enables pattern recognition across institutions, identifying 
money laundering networks and emerging threat patterns impossible to detect from individual 
reports. This approach from financial crime enforcement provides a proven model that can be 
adapted for AI incident response. 

2.2.5 Metrics and Tracking 

The Gap 
Metrics and methodologies for tracking system improvement over time need adaptation for 
AI-enabled systems. Traditional software performance and reliability metrics (mean time between 
failures, defect density) assume deterministic behavior and may not translate directly to 
probabilistic AI systems. Organizations lack metrics enabling comparability across systems or 
system versions, methodologies for assessing whether corrective actions actually improve 
systems, and infrastructure for tracking metrics over time. 

What's Needed 
Organizations should: 

●​ Adopt and adapt traditional reliability, cybersecurity, and incident metrics for AI contexts 
(Mean Time Between Incidents, Fix Effectiveness Rate, Mean Time to Respond)15 16 17 

●​ Develop custom metrics specific to their AI systems, operational use, and sector 
●​ Set up baseline measurements before implementing corrective actions 
●​ Track trends over time to demonstrate improvement 
●​ Report on reliability to stakeholders (internal leadership, regulators, users) 

Without these capabilities, organizations cannot demonstrate whether their incident response 
efforts produce measurable improvements. 

 

Reliability and safety in the context of incidents 

Reliability in AI systems represents a system's ability to consistently perform its intended 
function under varied operational conditions, focusing on predictable and consistent 
performance. Safety, while related, addresses the potential for harm and unintended 
consequences that may arise from system operation. These concepts are distinct yet 
interconnected: a system can be reliable without being safe, and conversely, a system might be 
considered safe even with reliability issues. 

An AI incident can manifest as a reliability issue, a safety concern, or a complex combination 
of both. In AI incident response, recognizing these subtle yet important differences is useful. 
The goal is not just to respond to incidents, but to build AI systems that are both dependably 
performant and fundamentally safe across diverse operational environments. 

17 Hubbard, D. W. (2007). How to measure anything: Finding the value of "intangibles" in business. John Wiley & 
Sons. 

16 Hubbard, D.W., & Seiersen, R. (2023). How to Measure Anything in Cybersecurity Risk (2nd Edition). Wiley. 

15 Marvin Rausand and Arnljot Høyland. System Reliability Theory: Models, Statistical Methods and Applications. 
Wiley-Interscience, Hoboken, NJ, 2004. 

 



 

2.2.6 Delineation of Responsibilities 

The Gap 
Clear delineation of responsibilities within an organization's incident response process often 
remains underdeveloped. Many organizations lack clarity on who detects incidents, who assesses 
severity and authorizes escalation, who executes stabilization procedures, who leads root cause 
investigations, who implements corrective actions, and who verifies correction effectiveness. 
Without pre-defined handoffs between technical teams and operational teams, critical steps may 
be delayed or omitted entirely. Responsibility may shift between organizations in 
system-of-systems contexts, making pre-established coordination protocols essential. 

What's Needed 
Pre-established responsibility matrices defining: 

●​ Roles across the complete response process 
●​ Handoff procedures between teams 
●​ Cross-organizational coordination protocols for system-of-systems 
●​ Authorization levels for different response actions 
●​ Escalation paths when primary responders are unavailable 

 

 



Section 3: The AI Incident Response Framework 

This section presents a systematic framework implementing AI Incident response in a manner 
that gaps discussed in Section 2. The framework builds on three foundations. First, it adapts 
established methodologies from cybersecurity incident response, systems engineering, reliability 
engineering, and failure mode analysis. These disciplines have decades of proven effectiveness in 
complex systems domains (3.1). Second, it presents a seven-step incident response process 
integrating response actions with required preparedness infrastructure (3.2). Third, it provides 
guidance for integrating AI incident response with existing organizational processes rather than 
building parallel systems (3.3). 
 

 
Figure 3: The proposed AI Incident Response Framework adapts proven methodologies and 
core principles from established disciplines. 

3.1 Principles: Leveraging Proven Approaches 

This framework reuses proven approaches from cybersecurity, systems engineering, reliability 
engineering, and failure mode analysis rather than inventing new methodologies. These domains 
have addressed incident response in complex systems for decades. The overall incident response 
structure remains constant across domains. The specific techniques for executing each step 
should be adapted for AI's non-deterministic behavior, context-dependence, and adaptive 
characteristics. 

 



3.1.1 Foundation in Established Disciplines 
Rather than inventing entirely new incident response methodologies, this framework adapts 
established processes from other complex systems domains. Four disciplines provide particularly 
relevant foundations: 
 
Cybersecurity Incident Response4 5 18 19 provides the fundamental structure for the incident 
response loop. Frameworks like the NIST Cybersecurity Framework and ISO/IEC 27035 
provide proven processes: preparation, detection and analysis, containment, eradication, 
recovery, and post-incident activities. Most organizations already have cybersecurity incident 
response capabilities with established infrastructure, trained personnel, escalation procedures, 
and reporting systems. This existing foundation provides enormous value, enabling organizations 
to extend and adapt what they already have rather than build entirely new processes. 
 
However, cybersecurity incident response typically focuses on adversarial threats, such as 
malicious actors, data breaches, unauthorized access, and deliberate exploitation of 
vulnerabilities. AI incidents encompass a broader scope. Unexpected behaviors, performance 
failures, quality degradation, and unintentional harms from system limitations all demand 
incident response but often fall outside traditional cybersecurity frameworks. Many real-world AI 
incidents involve both security and safety dimensions simultaneously, requiring response 
coordination across organizational functions that traditionally operate separately. 
 
This framework extends cybersecurity incident response to address AI's full incident spectrum 
while leveraging the proven loop structure and existing organizational capabilities that 
cybersecurity provides. 
 
Systems Engineering1 3 20 21  emphasizes understanding how components interact to create 
system-level behaviors. It provides methodologies for analyzing complex interactions, 
understanding operational contexts, and recognizing that incidents often arise from interactions 
between individually functional components rather than from isolated failures. Systems 
engineering teaches us to look beyond component-level problems to system-level patterns, which 
is particularly valuable for AI systems, where failures may arise from context, deployment 
environments, or user characteristics rather than from model defects alone. 
 
Reliability Engineering22 6  23 provides methodologies for tracking system reliability over time, 
identifying degradation patterns before they cause incidents, and assessing whether corrective 
actions actually improve system performance. Reliability engineering gives us the metrics and 
analytical approaches to show measurable improvement rather than simply responding to 
individual incidents. For AI systems with non-deterministic behavior and probabilistic outputs, 
reliability engineering's focus on distributional shifts and statistical measures of improvement 
proves especially valuable. 
 

23 Ebeling, C. E. (1997). An Introduction to Reliability and Maintainability Engineering 
22 James McLinn. A short history of reliability. The Journal of Reliability Information, pages 8–15, 01 2011. 

21 Erik Hollnagel, David D. Woods, Nancy Leveson, Resilience Engineering: Concepts and Precepts. Ashgate 
Publishing, Ltd., 2007. ISBN 978-0-754-68136-6. 

20 Blanchard, B. S., & Fabrycky, W. J. (2011). Systems Engineering and Analysis (5th ed.) 

19 Carnegie Mellon University, Incident Management 
https://www.cisa.gov/sites/default/files/c3vp/crr_resources_guides/CRR_Resource_Guide-IM.pdf  

18 UK National Cyber Security Centre (NCSC), Incident Management 
https://www.ncsc.gov.uk/collection/incident-management  

 

https://www.cisa.gov/sites/default/files/c3vp/crr_resources_guides/CRR_Resource_Guide-IM.pdf
https://www.ncsc.gov.uk/collection/incident-management


Failure Mode and Effects Analysis (FMEA)24 25 26 provides a systematic approach to 
identifying potential failure modes, assessing their severity and likelihood, and prioritizing 
mitigation efforts. Initially developed for complex engineered systems, FMEA provides 
structured methods for anticipating how systems might fail and preparing responses before 
incidents occur. FMEA's emphasis on proactive analysis complements cybersecurity's reactive 
incident response, helping organizations prepare for both adversarial attacks and unintentional 
failures. 
 
These disciplines have proven effective across aerospace, healthcare, financial services, critical 
infrastructure, and cybersecurity. They share common characteristics with AI-enabled systems: 
complexity, interconnectedness, context-dependency, and the potential for cascading failures 
across organizational boundaries. 

3.1.2 Core Principles 
Four principles adapted from these mature domains guide the framework: 
 

1.​ Quick containment using predetermined processes to minimize harm. Time 
pressure during active incidents makes careful deliberation impractical. Organizations 
should establish stabilization procedures before deploying systems, enabling rapid 
response without complex decision-making under stress. 

2.​ Systematic reporting and root cause analysis to understand incidents and failure 
mechanisms. Learning from incidents requires moving beyond surface symptoms to 
understand why failures occurred. Standardized reporting structures and systematic 
analysis methodologies enable this deeper understanding. 

3.​ Evidence-based mitigation to reduce recurrence and realized harm. Corrective 
actions should target root causes identified through systematic analysis, not just address 
visible symptoms. Verification confirms that corrections actually improve reliability 
rather than introducing new problems. 

4.​ Continuous improvement based on real incidents and reliability metrics. Each 
incident provides information about how systems fail in operational contexts. 
Organizations should track reliability metrics over time to demonstrate whether incident 
response efforts produce measurable improvements in system performance. 

3.1.3 Value of this approach 
These established frameworks work because they address challenges that AI incident response 
now faces. They provide: 
 

●​ Proven methodologies tested across decades and multiple domains 
●​ Structured processes that function under pressure without requiring improvisation 
●​ Existing organizational capabilities that can be extended rather than replaced 
●​ Emphasis on preparation before incidents occur rather than reactive response alone 
●​ Measurement frameworks enabling demonstration of improvement over time 
●​ Recognition of complexity in interconnected systems where root causes may be distant 

from symptoms 

26 Stamatis, D. H. (2003). Failure Mode and Effect Analysis: FMEA from Theory to Execution 
25 McDermott, R. E., et al. (2009). The Basics of FMEA 

24 FEMA has identified different function levels for its operations: Primary MIssion Essential Functions, Mission 
Essential Function, and Essential Supporting Activities. For FEMA, a failure’s severity level could be determined by 
which of these function levels was impacted. 
https://www.fema.gov/sites/default/files/2020-07/Federal_Continuity_Directive-2_June132017.pdf 

 



 
The framework adapts these proven approaches for AI-specific characteristics. The overall 
incident response structure remains constant across domains. The specific techniques and tools 
for executing each step should account for AI's adaptive behavior, non-determinism, 
context-dependence, and uncertainty. Organizations need not invent entirely new processes. 
Instead, they can build on what already works, adapting execution details for AI's unique 
attributes. 

3.2 The Seven-Step Incident Response Loop 

The framework consists of seven interconnected steps forming a complete incident response 
cycle. Each step description integrates both the response action and the preparedness 
infrastructure required to execute it effectively. A critical insight from mature incident response 
domains: systematic response depends fundamentally on preparation before incidents occur. 

The seven steps are: 

1.​ Detect: Identify the incident through monitoring and user feedback 
2.​ Assess: Evaluate severity and potential impact using established criteria 
3.​ Stabilize: Execute pre-planned procedures to contain harm 
4.​ Report & Document: Document incident details using standardized structures and 

notify stakeholders 
5.​ Investigate & Analyze: Determine root cause through systematic analysis 
6.​ Correct: Implement solutions to address root causes, reduce recurrence, and mitigate 

realized harm 
7.​ Verify: Test and validate corrections, then monitor for effectiveness 

 

Figure 4: The circular process of the seven-step incident response loop  

 



 
Critical Point: Preparedness Enables Response 
Organizations cannot respond effectively to AI incidents without a preparedness infrastructure 
established before deployment. Each of the seven steps requires specific preparedness 
investments, described in the subsections below. The Preparedness Recommendations range 
from severity classification frameworks and monitoring systems to multidisciplinary investigation 
teams and verification processes. Organizations that attempt incident response without this 
foundation face reactive firefighting rather than systematic reliability improvement. This 
preparedness-focused approach moves organizations from reactive crisis management to 
systematic reliability improvement. 

 

The loop is customizable 

The specific ordering and naming conventions for this framework will vary across sectors and 
organizations; however, the fundamental intent, goal, and approach of this incident response 
cycle are generalizable.  

This seven-step loop can be easily customized. For example, an organization might want 
multiple Investigate & Analyze steps. A cybersecurity loop might rename the Assess step as 
Containment, while replacing the Correct step with two steps, Eradicate and Recovery. 

 

3.2.1 Step 1: Detect 

Action: Identify the incident through system monitoring and user feedback. 

AI system incidents often develop gradually through subtle performance degradation or 
context-dependent failures rather than manifesting as discrete events. No single detection 
approach can capture all incidents. Organizations need multiple complementary detection 
mechanisms working in concert. Additionally, some incidents are easier to detect when data is 
shared across organizations. 

Multiple Complementary Detection Mechanisms 
Automated Technical Monitoring provides continuous surveillance of system behavior, 
tracking response times, throughput, output formats, resource consumption, authentication 
patterns, and access behaviors. Automated monitoring excels at detecting deviations from 
established baselines and identifying anomalies in technical metrics. It provides objective, 
real-time data about system performance.27 28 However, automated monitoring may miss 

28 Leest, J., Gerostathopoulos, I., and Raibulet, C. (2023). "Expert Monitoring: Human-Centered Concept Drift 
Detection in Machine Learning Operations." In Proceedings of the 2024 ACM/IEEE 44th International 
Conference on Software Engineering: New Ideas and Emerging Results 
 

27 Tripathi, J., Gomes, H., Botacin, M. (2025). "Towards Explainable Drift Detection and Early Retrain in ML-Based 
Malware Detection Pipelines." In: Egele, M., Moonsamy, V., Gruss, D., Carminati, M. (eds) Detection of Intrusions 
and Malware, and Vulnerability Assessment. DIMVA 2025. Lecture Notes in Computer Science, vol 15748. Springer, 
Cham 

 



context-dependent failures, subtle quality degradation, or incidents whose symptoms appear only 
in specific user populations or use cases. 
 
User Reports flow through help desks, feedback mechanisms, and surveys, identifying problems 
in real-world contexts that automated monitoring cannot capture. Users experience the actual 
consequences of AI system behavior. They detect when outputs are unhelpful, incorrect, or 
harmful in ways that technical metrics may not reveal. Users provide essential signals29 30 about 
how AI systems perform in operational environments with real-world variation and complexity. 
However, user reporting may introduce detection delays, depend on users recognizing problems 
and taking action to report them, and may produce inconsistent or incomplete information. 
 
Internal Organizational Functions provide additional detection capabilities. Quality assurance 
teams identify issues during routine testing, often catching problems before they affect 
production users. Compliance officers discover problems during audits, particularly when AI 
system behavior creates regulatory concerns. Security teams detect anomalies during security 
assessments and penetration testing. Data scientists notice performance degradation during 
model monitoring and drift analysis. Each function contributes distinct perspectives and 
detection capabilities. 

System-of-Systems Detection requires coordination across organizational boundaries. In 
deployments where AI systems interact across organizational boundaries, detection may extend 
beyond any single organization. Incidents may cascade through connected systems, with root 
causes manifesting far from initial indicators. A failure in one organization's AI system may 
trigger failures in partner organizations' systems that depend on its outputs or coordinate with its 
operations. 

Effective detection in system-of-systems environments requires coordination between 
organizations to identify and trace incidents as they propagate. This coordination demands 
pre-established communication channels, shared understanding of system interdependencies, and 
agreements about how organizations will share incident information while protecting proprietary 
details. 

Applying Detection Across Domains 
Table 1 illustrates how detection operates in both a mature complex system domain (financial 
services transaction monitoring) and in agentic AI systems. Both domains face similar challenges: 
gradual degradation rather than discrete failures, multiple signal sources providing 
complementary information, and the need for both automated and human detection 
mechanisms. 

30 Y. Senarath, A. Mukhopadhyay, S. M. Vazirizade, H. Purohit, S. Nannapaneni and A. Dubey, "Practitioner-Centric 
Approach for Early Incident Detection Using Crowdsourced Data for Emergency Services," 2021 IEEE 
International Conference on Data Mining (ICDM), Auckland, New Zealand, 2021, pp. 1318-1323, doi: 
10.1109/ICDM51629.2021.00164. 

29 Senarath, Y., Mukhopadhyay, A., Vazirizade, S.M., Purohit, H., Nannapaneni, S., and Dubey, A. (2024). "Designing 
a Human-centered AI Tool for Proactive Incident Detection Using Crowdsourced Data Sources to Support 
Emergency Response." Digital Government: Research and Practice, Vol. 5, No. 1 
 

 



Table 1: Comparative Example: Detection in Financial Services and Agentic AI. Effective 
incident detection for complex systems often requires multiple complementary 
approaches. 

Comparative Example for Step 1​
Detection in Financial Services and Agentic AI 

Financial Services: Fraud Detection 
System 

Agentic AI: Customer Service Agent - 
International Expansion 

Automated Monitoring: Transaction monitoring 
system flags unusual pattern, a customer makes 15 cash 
withdrawals of $9,500 each over two weeks (below 
$10,000 reporting threshold). Pattern deviates from 
customer's historical baseline of 2-3 monthly 
withdrawals averaging $500. System generates 
automated alert based on velocity and amount 
thresholds. 

Automated Monitoring: System tracks agent 
performance metrics including resolution rates, average 
handling time, and tool usage patterns. Monitoring flags 
that agent's fallback-to-human rate in German market 
operations increased to 15% vs. 2% baseline in US market 
operations. Quality scores for German market 
interactions declined to 3.2 vs. 4.1 baseline (out of 5). 
Automated alerts trigger based on deviation from 
established baselines and cross-market performance 
comparison. 

User Reports: Branch manager receives customer 
complaint about account access issues after fraud 
prevention system blocked legitimate transactions 
during travel. Customer reports calling help desk three 
times with unresolved problems. Other customers 
report similar experiences with blocked cards. 

User Reports:  German market customers submit 
feedback through post-interaction surveys reporting 
unhelpful responses and confusion about AI outputs. 
Help desk receives increased volume of complaints from 
German market about needing multiple interactions to 
resolve simple issues. Feedback mentions AI "not 
understanding" German address formats and product 
inquiries requiring human escalation. 

Internal Functions: Quality assurance review of fraud 
alerts identifies false positive rate increase from 8% to 
22% for specific customer segment (small business 
accounts with international transactions). Compliance 
team notices pattern during audit review. Security team 
identifies that recent rule updates interact poorly with 
legitimate cross-border payment patterns. 

Internal Functions: Quality assurance team conducting 
weekly conversation sample reviews notices agent 
struggles with German postal address conventions (street 
number after street name, postal code city prefixes). Data 
scientists monitoring model performance observe 
increased uncertainty scores for German market 
interactions. Operations team notices product catalog 
mismatches between US terminology and German market 
product inquiries. Business development team raises 
concerns about service quality impacting market 
expansion success. 

Detection Outcome: Multiple signals converge; 
automated monitoring flags suspicious patterns, users 
report blocked legitimate transactions, internal reviews 
identify systematic false positives affecting specific 
customer segment. Incident enters response process at 
Month 2 when pattern becomes clear across detection 
mechanisms. 

Detection Outcome:  Multiple signals converge: 
monitoring shows degraded performance metrics in 
German market, users report poor service quality in new 
market, internal reviews identify pattern of failures 
correlated with German address formats and product 
terminology. Incident enters response process at Month 3 
when pattern becomes clear across detection mechanisms 
and threatens market expansion objectives. 

 

 



Preparedness Recommendations 
Ideally, organizations should establish detection infrastructure before deploying AI systems: 
 

●​ Monitoring infrastructure deployed and configured to track relevant technical metrics 
●​ User feedback channels established, monitored, and integrated into incident detection 

workflows 
●​ Clear procedures for internal teams to escalate issues from their functional areas 
●​ Cross-organizational detection protocols for system-of-systems deployments 
●​ Defined thresholds for automated alerts calibrated to avoid both missed detections and 

alert fatigue 
●​ Integration points connecting detection mechanisms, so patterns become visible across 

signal sources 

Without this preparedness infrastructure, organizations rely on chance discovery of incidents 
rather than systematic detection. 

3.2.2 Step 2: Assess 

Action: Evaluate the severity and potential impact using established criteria. 

Assessment determines incident severity, prioritizes response efforts, identifies required 
resources, and establishes escalation paths. During active incidents, organizations must make 
rapid decisions about response intensity: whether the incident requires executive notification, 
whether to activate emergency response procedures, whether external expertise is needed, and 
whether regulators must be notified. Assessment frameworks enable consistent, defensible 
determinations under time pressure. 

Assessment differs from investigation (Step 5). Assessment makes initial severity determinations 
based on observable information to guide immediate response. Investigation conducts deeper 
analysis to determine root causes. Assessment asks "how bad is this?" Investigation asks "why 
did this happen?" 

Multi-Dimensional Assessment 
Effective assessment requires frameworks accounting for multiple dimensions simultaneously 
rather than relying on any single factor. Organizations should consider: 

●​ Magnitude and type of harm: Physical injury, financial loss, privacy violations, service 
denial, or combinations thereof 

●​ Sensitivity of affected populations: Incidents affecting vulnerable populations or 
distinct population segments warrant heightened concern beyond raw numbers affected 

●​ Criticality of affected systems: Mission-critical systems, customer-facing services, and 
systems subject to regulatory requirements demand different response urgency 

●​ Regulatory implications: Certain incident types trigger mandatory reporting 
obligations or compliance reviews 

●​ Potential for ongoing or escalating harm: Active incidents causing continuing harm 
require more urgent response than contained historical incidents 

Assessment synthesizes these dimensions into severity classifications that drive response 
decisions. 

 



Developing Severity Classification Frameworks 
Organizations should develop frameworks tailored to their operational contexts and system 
characteristics while referencing proven standards. Building from scratch invites inconsistency 
and errors in high-pressure situations. Adapting proven frameworks provides structure while 
enabling customization for specific organizational needs. 
 
Three Approaches to Severity Classification 
Organizations can develop severity classifications using different approaches, each emphasizing 
different aspects of incidents. Below are three common emphases (not an all-inclusive list) for 
developing incident severity criteria. 
 
Harm-Based Severity focuses on the impact on affected entities: people, organizations, 
property, communities, or the environment. This approach evaluates the magnitude of harm the 
incident caused. Harm-based classifications work well for incidents with clear, measurable 
impacts such as physical injury, financial loss, environmental damage, or privacy violations. This 
approach aligns naturally with regulatory frameworks focused on consumer protection, civil 
rights, and safety. 
 
Mission and Operations-Based Severity focuses on the impact on organizational operations 
and critical functions. This approach asks: How much did this incident disrupt what we need to 
do? Operations-based classifications work well for incidents affecting business continuity, service 
availability, or mission execution. The same technical failure may warrant different severity 
classifications depending on system criticality. A navigation system error that causes minor 
inconvenience in a personal vehicle represents a catastrophic failure in aircraft flight control. 
 
Performance-Based Severity focuses on system reliability trends and performance 
characteristics rather than individual incident impacts. This approach asks: How is system 
reliability changing? How well does the system perform relative to requirements and baselines? 
Performance-based classifications work well for incidents involving quality degradation, 
increasing error rates, deviation from documented capabilities, or drift from acceptable 
performance baselines. 
 
Performance-based severity considers multiple factors: gradual performance decline over time, 
variation across user populations, incident frequency and rate, increasing output variability, 
shifting false positive and false negative rates, declining robustness to edge cases, and scope of 
problems broadening across system functions. AI systems may reach severe conditions through 
accumulation rather than through any single discrete failure. Performance-based assessment 
captures these patterns that individual incident analysis would miss. 
 
Organizations may need multiple severity frameworks for different incident types. A financial 
institution might use harm-based severity for incidents affecting customers, operations-based 
severity for incidents affecting transaction processing, and performance-based severity for 
monitoring fraud detection system reliability. 
 
Incident Aggregation 
Multiple incidents of lower individual severity can aggregate to higher severity when they exhibit 
systematic patterns. Ten marginal incidents affecting random customers may warrant marginal 
classification individually. Ten marginal incidents, all affecting customers from the same 
demographic group, aggregate to critical severity due to the systematic pattern indicating 
systematic performance disparities. Twenty performance degradation incidents distributed 
randomly across a system may remain marginal individually. Twenty performance degradation 

 



incidents concentrated in specific operational contexts aggregate to critical severity because they 
reveal systematic reliability problems. 
 
Organizations should consider both individual incident severity and aggregate pattern severity 
when classifying incidents and determining response priorities. 
 
MIL-STD-882E as Structural Foundation 
MIL-STD-882E,31 the Department of Defense Standard Practice for System Safety, provides a 
proven structural foundation that organizations can adapt. Originally developed for defense 
applications, this standard has been successfully adapted across aerospace, healthcare, 
automotive, natural disasters,32 and critical infrastructure domains.33 34 It defines four severity 
levels that provide starting points organizations can customize: 

●​ Catastrophic (Level I): Death, permanent total disability, irreversible significant 
environmental impact, or monetary loss exceeding $10M 

●​ Critical (Level II): Permanent partial disability, injuries requiring hospitalization of three 
or more people, reversible significant environmental impact, or monetary loss between 
$1M and $10M 

●​ Marginal (Level III): Injury or illness resulting in lost workdays, reversible moderate 
environmental impact, or monetary loss between $100K and $1M 

●​ Negligible (Level IV): Injury or illness not resulting in lost workdays, minimal 
environmental impact, or monetary loss under $100K 

 
Organizations should adapt the specific dollar thresholds, harm definitions, and level names to 
reflect their operational contexts. However, the four-level structure spanning catastrophic to 
negligible applies broadly across complex systems domains and provides consistency, enabling 
comparison across incident types. 
 
Harm-Based Severity Classification 
Table 2 presents entity-focused severity criteria adapted from MIL-STD-882E, illustrating how 
organizations can customize definitions while maintaining structural consistency. This 
harm-based approach provides three parallel classification schemes focusing on individual health, 
environmental impact, and financial loss. Organizations can develop additional columns 
reflecting their specific contexts, such as impact on civil rights, damage to critical infrastructure, 
or harm to vulnerable populations. 
 
 

34 FEMA has identified different function levels for its operations: Primary Mission Essential Functions, Mission 
Essential Function, and Essential Supporting Activities. For FEMA, a failure’s severity level could be determined by 
which of these function levels was impacted. 
https://www.fema.gov/sites/default/files/2020-07/Federal_Continuity_Directive-2_June132017.pdf  

33 
https://nij.ojp.gov/sites/g/files/xyckuh171/files/media/document/draft-failure-definitions-and-scoring-criteria.do
cx  

32 H. J. Caldera and S. C. Wirasinghe. A universal severity classification for natural disasters. Natural Hazards, 
111:1533–1573, 2021. doi: 10.1007/s11069-021-05106-9 

31 United States of America Department of Defense. Department of defense standard practice, system safety 
(mil-std-882e). Department of Defence, 2012.  
https://safety.army.mil/Portals/0/Documents/ON-DUTY/SYSTEMSAFETY/Standard/MIL-STD-882E-change-
1.pdf  

 

https://www.fema.gov/sites/default/files/2020-07/Federal_Continuity_Directive-2_June132017.pdf
https://nij.ojp.gov/sites/g/files/xyckuh171/files/media/document/draft-failure-definitions-and-scoring-criteria.docx
https://nij.ojp.gov/sites/g/files/xyckuh171/files/media/document/draft-failure-definitions-and-scoring-criteria.docx
https://safety.army.mil/Portals/0/Documents/ON-DUTY/SYSTEMSAFETY/Standard/MIL-STD-882E-change-1.pdf
https://safety.army.mil/Portals/0/Documents/ON-DUTY/SYSTEMSAFETY/Standard/MIL-STD-882E-change-1.pdf


Table 2: Entity-focused severity criteria provide standard definitions spanning multiple 
harm dimensions. Organizations adapt dollar thresholds and harm definitions to their 
operational contexts while maintaining the four-level structure enabling consistent 
severity assessment across incident types. 

Harm Severity​
Scoring Criteria Based on Entity Impact 

Description Severity 
Category 

Incident Result Criteria Examples 

Individual Health 
Focused 

Environment 
Focused 

Financial Loss 
Focused 

Catastrophic I Death or permanent 
total disability 

Irreversible significant 
environmental impact 

Monetary loss (or 
equivalent property 
damage) equal to or 
exceeding $10M 

Critical II Permanent partial 
disability, injuries, or 

occupational illness 
that may result in the 
hospitalization of at 
least three personnel 

Reversible 

significant 
environmental impact 

Monetary loss (or 
equivalent property 
damage) equal to or 
exceeding $1M but less 
than$10M 

Marginal III Injury or occupational 
illness resulting in one 
or 

more lost work day(s) 

Reversible moderate 
environmental impact 

Monetary loss (or 
equivalent property 
damage) equal to or 

exceeding $100K but 
less than $1M 

Negligible IV Injury or occupational 
illness not resulting in 
a lost workday 

Minimal 
environmental impact 

Monetary loss (or 
equivalent property 
damage) less than $100K 

Severity criteria from MIL-STD-882E31 

 

Mission and Operations-Based Severity Classification 
Table 3 illustrates operations-focused severity criteria emphasizing mission and task impact 
rather than entity harm. This table demonstrates a critical insight: operational context 
determines severity classification. The same technical issue warrants different severity levels 
depending on system criticality and operational consequences. 
 
Consider degraded navigation output. In an airborne radar system, degraded output prevents 
safe flight, warranting catastrophic classification because the mission cannot be safely executed. 
In a personal vehicle GPS, degraded output causes missed turns and inconvenience, warranting 

 



marginal classification because the vehicle remains safely operable through alternative navigation 
methods. The technical failure is similar, but the operational consequences differ 
dramatically. 
 
This context-dependency means organizations deploying AI systems across multiple operational 
contexts may need different severity classifications for technically similar failures. An image 
generation error producing six-fingered hands represents a marginal issue for a consumer 
entertainment application but could represent a critical issue for a medical imaging system where 
anatomical accuracy matters for diagnosis. 
 
 

Table 3: Examples of operations-focused severity criteria demonstrate that operational 
context determines severity classification 

Severity 
Category 

Incident Result Criteria Examples 

Airborne Radar Continuously Operating 
AI 

Personal Vehicle 

1 Engine failure prevents safe 
flight. 

Image generators produce child 
sexual abuse material (CSAM). 

A tire blows out and needs to 
be replaced. 

2 Some radar antenna 
elements are not working. 
The radar is operable, but its 
performance is degraded. 

Image generators cannot 
consistently remove types of 
objects (e.g., dogs, airplanes, 
cars, etc.) when requested 
through a text prompt.  

The internal GPS navigation 
system has an old map and 
needs updating. The system 
usually works well, but more 
recent maps would prevent 
wrong or missed turns. 

3 An overhead interior light 
needs replacing, but 
operations are not impacted. 

Created images sometimes have 
hands with 6 fingers. 

A small dent in the passenger 
door. 

Table taken from 35 

 

Performance-Based Severity Classification 
Performance-based approaches assess severity through system reliability trends rather than 
individual incident impacts. A single misclassification in a fraud detection system may represent 
negligible severity. A pattern of increasing misclassification rates over time, even with each 
individual incident remaining negligible, may aggregate to critical severity because the pattern 
indicates systematic reliability degradation. 
 

35 Boston, M. F., Frase, H., & Georgala, E. (2025). Reliability and Repair for Agentic Systems. Reins AI Technical 
White Paper v1.0. October 2025. Retrieved from www.reinsai.com/articles/reliability-and-repair-for-agentic-systems 

 

http://www.reinsai.com/articles/reliability-and-repair-for-agentic-systems


Performance-based severity proves particularly valuable for AI systems exhibiting gradual drift or 
degradation. Organizations should track metrics including error rates over time, performance 
gaps across user populations, quality score trends, and incident frequency patterns. When these 
metrics show consistent degradation, the aggregate pattern may warrant a higher severity 
classification than any individual incident would receive. 
 
Performance-based assessment requires baseline measurements and a continuous monitoring 
infrastructure. Organizations cannot assess whether performance has degraded without knowing 
previous performance levels and tracking changes over time. 
 
Number of Severity Levels 
Organizations should use at least four severity levels rather than fewer. Three-level frameworks 
(such as High-Medium-Low or Critical-Moderate-Minor) create operational problems that 
undermine effective incident response. 
 
The least consequential level tends to be ignored. Organizations rarely allocate resources to 
investigating or correcting incidents classified at the lowest severity. These incidents get logged 
but often receive no systematic response. When only three levels exist, this means one-third of 
the severity range receives minimal attention. 
 
The most severe level rarely occurs or may never occur for many systems. Truly catastrophic 
incidents with deaths, permanent disabilities, or losses exceeding $10M happen infrequently. 
When only three levels exist, the highest level may remain empty or nearly empty for extended 
periods, making it operationally irrelevant for most day-to-day prioritization decisions. 
 
Most incidents of operational interest fall in the middle range between ignored negligible 
incidents and rare catastrophic incidents. With only three severity levels, this entire middle range 
collapses into a single category. Organizations cannot differentiate between incidents requiring 
urgent executive attention and incidents that can wait for scheduled maintenance cycles. All 
incidents in this broad middle category compete equally for resources and attention despite 
having different actual urgency and impact. 
 
Dividing the middle range into two or more levels dramatically improves operational utility. With 
four levels, organizations can distinguish between: 

●​ Critical incidents requiring immediate executive notification and emergency response 
●​ Marginal incidents requiring systematic investigation and correction but not emergency 

procedures 
 
This distinction enables better prioritization and clearer escalation criteria. Response teams know 
which incidents demand immediate action and which can follow standard processes. Executives 
receive notifications about genuinely urgent issues rather than being overwhelmed by all 
non-negligible incidents. 
 
Five or more levels provide even finer gradation, though organizations should balance 
granularity against consistency. More levels enable more precise prioritization but require more 
detailed criteria and may introduce classification inconsistencies if criteria are not sufficiently 
clear. 
 
Table 3 presents a three-level framework for illustration purposes, demonstrating how 
operational context affects severity. Organizations adapting this approach for their own use 

 



should consider adding a fourth level to improve operational utility. Incident aggregation, 
discussed earlier, addresses some prioritization needs by elevating multiple lower-severity 
incidents to higher aggregate severity when patterns indicate systematic problems. However, 
aggregation does not fully substitute for appropriate severity level granularity in the base 
framework. 
 
AI-Specific Severity Criteria Factors 
AI-enabled systems introduce factors requiring explicit consideration during the development of 
the severity levels and the Assess step: 

●​ Differential Performance Patterns: Incidents exhibiting systematic performance 
variations across distinct user populations warrant elevated severity assessment, even 
when aggregate harm magnitudes might suggest a lower classification. Systematic 
performance disparities create both direct harm to affected users and legal compliance 
risks under anti-discrimination regulations in many jurisdictions. 

●​ Potential for Harm Accumulation: AI incidents may cause harm that accumulates 
across multiple interactions rather than manifesting in single discrete events.A financial 
advisory system making small calculation errors in each transaction may create significant 
cumulative financial harm over thousands of transactions with hundreds of users. 
Assessment should consider total accumulated harm, not just individual interaction 
impacts. 

●​ Context-Dependency of Failure: Systems that fail for specific user populations, in 
particular operational contexts, or under certain environmental conditions may show 
incident severity that varies dramatically by deployment scenario. Assessment should 
evaluate severity across the full range of actual operational contexts, not just average or 
typical usage scenarios. 

●​ Cascading Potential: AI systems integrated into workflows or system-of-systems 
architectures may propagate failures across organizational boundaries. Assessment should 
consider not just immediate direct harm but also potential for cascading effects through 
interconnected systems. 

●​ Regulatory Reporting Thresholds: Certain jurisdictions and sectors mandate incident 
reporting above specified thresholds. EU AI Act requirements, sector-specific regulations 
in financial services or healthcare, and data breach notification laws all establish reporting 
obligations triggered by specific incident characteristics. Assessment should explicitly 
evaluate whether incidents cross these regulatory thresholds, as crossing them affects 
required response actions and timelines. 

Leveraging Organizational and Regulatory Context 
Assessment does not occur in isolation from organizational realities and regulatory requirements. 
Effective assessment integrates: 

●​ Business impact analyses: quantifying operational and financial consequences 
●​ Operational dependencies: identifying which business functions depend on affected 

systems 
●​ Mandatory reporting thresholds: establishing regulatory obligations 
●​ Compliance obligations: defining required response actions and timelines 
●​ Stakeholder agreements: specifying contractual responsibilities 

 
Organizations should develop assessment templates with standardized fields enabling rapid, 
consistent evaluation while accommodating context-specific factors. Templates should capture 
affected population size and characteristics, type and magnitude of harm, system criticality, 

 



regulatory implications, and escalation requirements. Standardized templates enable consistent 
assessment across different incident types and different assessors while ensuring all relevant 
factors receive explicit consideration. 

Applying Assessment Across Domains 
Table 4 illustrates how assessment operates in both a mature complex system domain (financial 
services fraud detection) and in agentic AI systems. Both domains require multi-dimensional 
assessment considering harm magnitude, affected populations, operational impact, regulatory 
implications, and potential for ongoing harm. 

 

Table 4:  Comparative Example: Assessment in Financial Services and Agentic AI. 
Multi-dimensional assessment synthesizes harm magnitude, population sensitivity, 
system criticality, regulatory implications, and ongoing harm potential into severity 
classifications.  

Comparative Example for Step 2 ​
Assessment in Financial Services and Agentic AI 

Financial Services: Fraud Detection 
System 

Agentic AI: Customer Service Agent - 
International Expansion 

Initial Observations: Fraud detection system 
blocking legitimate transactions for customers 
traveling internationally. Pattern identified through 
detection mechanisms: automated monitoring shows 
22% false positive rate (up from 8% baseline) for 
small business accounts with cross-border 
transactions. Customer complaints about blocked 
cards during legitimate travel. Branch managers 
reporting multiple cases. 

Initial Observations: Customer service agent exhibiting 
degraded performance in German market operations. 
Pattern identified through detection mechanisms: 
automated monitoring shows 15% fallback-to-human rate 
in German market vs. 2% baseline in US market. Quality 
scores lower for German market interactions (3.2 vs. 4.1 
out of 5). User complaints disproportionately from new 
market operations. QA reviews confirm agent struggles 
with German address formats and product terminology. 
Approximately 50,000 customer interactions affected over 
3-month period. 

Harm Type & Magnitude: Tangible harm: 
Customers unable to access funds during travel 
(stranded travelers, emergency payment failures). 
Legitimate business transactions declined causing 
operational disruption of the affected business and 
potential business relationship damage. Intangible 
harm: Customer trust in bank eroded, reputational 
damage. Magnitude: Approximately 200 customer 
accounts affected over 6-week period. Estimated 
financial impact: $50K in direct costs (expedited card 
replacements, fee reversals), $500K in estimated 
business relationship impact. 

Harm Type & Magnitude: Tangible harm:  Extended 
resolution times for German market customers, requiring 
multiple interactions vs. single interaction for US market 
customers. Increased operational costs from elevated 
human escalation rates. Slower market penetration due to 
poor customer experience. Intangible harm: Brand 
reputation damage in strategically important expansion 
market, customer frustration affecting market adoption 
rates. Magnitude: Approximately 50,000 customer 
interactions affected over 3-month period representing 
12% of German market customer base. Estimated 30-40 
customer accounts lost. Revenue impact from delayed 
market penetration. 

Affected Population Sensitivity: Small business 
owners during business-critical travel. International 
transaction patterns common for import/export 
businesses. Timing-sensitive transactions (payroll, 
vendor payments). Population includes established 

Affected Population Sensitivity: Early adopter 
customers in newly launched international market. Market 
expansion represents significant business investment and 
strategic growth initiative. Customer experience in launch 
phase shapes brand reputation in new geography. Service 

 



Comparative Example for Step 2 ​
Assessment in Financial Services and Agentic AI 

Financial Services: Fraud Detection 
System 

Agentic AI: Customer Service Agent - 
International Expansion 

long-term customers with significant account balances. 
Some customers are sole proprietors for whom 
personal and business finances are closely linked. 

failures during market entry create amplified reputational 
risk. Market represents key growth opportunity for 
company's international expansion strategy. 

Criticality: Customer-facing system affecting payment 
access and account services. Not mission-critical 
infrastructure but the incident affects customer 
satisfaction and retention. Moderate business 
criticality, because customers can use alternative 
payment methods or request manual override. 
However, brand reputation impact is high. Failure 
affects customer trust in bank's reliability and fraud 
protection capabilities. 

Criticality: Customer-facing system handling 100% of 
initial customer service inquiries in German market. 
Business criticality high: customer service quality directly 
impacts market penetration success, affects company's 
public commitments to international expansion, and 
determines competitive positioning in new geography. 
Service quality failures threaten strategic business 
objectives and revenue growth targets. Market expansion 
timeline at risk. 

Regulatory Implications: Consumer Financial 
Protection Bureau (CFPB) oversight of unfair or 
deceptive practices. No mandatory immediate 
reporting threshold crossed, but pattern could trigger 
examination scrutiny. State banking regulators may 
consider pattern in safety and soundness 
examinations. Potential civil litigation exposure. 
Internal compliance review required. 

Regulatory Implications: Potential violation of 
consumer protection laws prohibiting discrimination in 
service provision. Federal Trade Commission (FTC) has 
jurisdiction over cross-border trade practices. German 
consumer protection regulations (BGB §312a) may apply 
to automated customer interactions. No mandatory 
immediate reporting threshold but company's own service 
level commitments and market entry representations create 
accountability obligations. Legal review required for 
market-specific compliance. 

Ongoing Harm Potential: Incident is active and 
ongoing (false positives continue affecting new 
customers until system fixed). Each day increases 
affected customer count and accumulates additional 
harm. However, customers can request manual 
overrides and problem is understood by branch staff 
who can provide workarounds. Escalating harm 
potential is moderate, because the problem is 
contained to known customer segment and temporary 
workarounds exist. 

Ongoing Harm Potential:  Incident is active and 
ongoing. Degraded service continues for all German 
market customers until correction implemented. Each day, 
additional interactions accumulate with varying service 
quality. Harm is continuous and affecting large customer 
volume. Escalating harm potential is moderate to high: 
pattern may worsen through feedback loops, threatens 
market expansion timeline, and damages brand reputation 
in strategically critical geography. Workaround (elevated 
human review) is activated but increases operational costs 
and delays market profitability. 

Severity Classification: Critical (Level II) 
Rationale: Magnitude affects 200 customers with 
significant operational impact but not catastrophic. 
Harm is tangible and immediate but temporary and 
reversible. Sensitive population (business owners 
during critical travel) elevates concern. System is 
customer-facing with high reputational stakes. 
Regulatory exposure exists but no immediate 
mandatory reporting. Ongoing active incident requires 
urgent response but not emergency procedures. 
Monetary impact <$1M justifies Critical rather than 
Catastrophic classification. 

Severity Classification: Critical (Level II) Rationale: 
Magnitude affects 50,000 interactions in strategically 
important new market launch. Both tangible harm (service 
quality, operational costs) and intangible harm (brand 
reputation in expansion market) are present. 
Customer-facing system affecting strategic business growth 
initiative. High reputational stakes in critical market 
expansion. Regulatory exposure requires legal review of 
market-specific requirements. Ongoing active incident 
affecting business-critical expansion requires urgent 
response and executive engagement. Classification as 
Critical (Level II) triggers executive notification, immediate 
corrective action, strategic business review, and 
consideration of market entry timeline adjustments. 

 



 
Preparedness Recommendations 
Organizations should establish assessment capabilities before deploying AI systems: 
 

●​ Severity classification framework developed, documented, and adapted to 
organizational context 

●​ Assessment templates created with standardized fields capturing all relevant 
dimensions 

●​ Personnel trained on applying criteria consistently across incident types 
●​ Escalation thresholds defined linking severity levels to required notifications and 

response actions 
●​ Integration with regulatory requirements, ensuring assessment explicitly evaluates 

reporting obligations 
●​ Clear decision authority designating who can make severity classifications and 

authorize escalations 
●​ Documentation requirements specifying what information should be captured during 

assessment 
 
Without this preparedness infrastructure, organizations make ad hoc severity determinations that 
may be inconsistent across incidents, do not account for critical factors, or miss regulatory 
obligations until it is too late. 

3.2.3 Step 3: Stabilize 

Action: Execute pre-planned procedures to contain harm. 

Stabilization and correction serve different purposes in the incident response cycle. Stabilization 
focuses on immediate mitigation of active harm and stopping ongoing harm through 
predetermined procedures that can be executed rapidly without complex decision-making under 
pressure. Correction, addressed later in Step 6, seeks to address harm already realized, improve 
the system, and reduce incident recurrence through systematic fixes targeting root causes. 

This distinction matters because they have different appropriate actions. Stabilization prioritizes 
speed and harm containment, even if solutions are imperfect or temporary. Correction prioritizes 
thoroughness and long-term reliability improvement, even if solutions take time to develop and 
deploy. Organizations that conflate these purposes may either respond too slowly during active 
incidents while looking for perfect solutions or implement quick fixes that fail to prevent 
recurrence. 

Why Pre-Planning is Critical 
Time pressure during active incidents makes careful deliberation impractical. When an AI system 
is actively causing harm, responders should act quickly to contain the situation. Deciding what 
actions to take, who has authority to authorize them, how to execute them technically, and what 
communication protocols to follow cannot happen effectively in the moment. Pre-planning is 
not optional for effective stabilization. 

Organizations should identify likely incident types and failure modes, design stabilization 
responses for each, document procedures in accessible formats, train staff on execution, and test 
these actions before deploying AI systems. This preparation transforms stabilization from 
improvisation under pressure into execution of intentional, vetted procedures. 

 



Each stabilization procedure should specify at least five key elements: 

1.​ Trigger conditions define what circumstances activate this procedure. Clear triggers 
enable rapid decision-making about which procedure to execute. Ambiguous triggers lead 
to delays while responders debate whether conditions warrant action. 

2.​ Execution steps detail what to do, in what order, with sufficient technical specificity 
that responders can execute without improvisation. Steps should be concrete and 
actionable rather than general guidance requiring interpretation. 

3.​ Authorization requirements specify who can authorize stabilization actions. Some 
stabilization procedures may be pre-authorized for immediate execution by on-call 
responders. Others may require executive approval due to business impact or 
customer-facing consequences. Clear authorization paths prevent delays while seeking 
approval and prevent unauthorized actions with significant consequences. 

4.​ Exit criteria define conditions under which organizations should remove stabilization 
actions and return to normal operations. Temporary measures like disabling features or 
implementing rate limits may create their own problems if left in place too long. Exit 
criteria specify when to remove temporary measures based on incident resolution, 
elapsed time, or business need. 

5.​ Communication protocols specify who needs notification about stabilization actions 
and what information they need. Internal stakeholders, including executives, operations 
teams, and customer service, need awareness. External stakeholders, including affected 
users and potentially regulators, need appropriate notification. Communication protocols 
reduce the risk that critical stakeholders learn about incidents through channels other 
than official notification. 

Organizations can prepare multiple types of stabilization actions. Common stabilization 
actions include: 

●​ Rolling back to previous system versions returns systems to last known good states. 
This works well when recent updates or changes correlate with incident onset. Rollback 
requires maintaining previous versions in deployment-ready states and having tested 
procedures for version switching. 

●​ Activating fail-safes that constrain AI behavior36 implements automatic safety 
boundaries limiting what actions AI systems can take without turning them off entirely. 
Fail-safes might restrict AI to read-only operations, limit transaction amounts below 
specified thresholds, disable specific tools or capabilities while maintaining core 
functions, or require additional confirmation for high-risk actions. This works well when 
the AI can continue operating safely within narrower boundaries. Fail-safes require 
pre-configured constraints that can be activated quickly. 

●​ Switching to backup systems or manual processes takes AI systems offline entirely 
and maintains critical services through alternatives. This requires maintaining backup 
capabilities and regular testing to ensure backups function when needed. 

36 Hanmer, R.S. (2007). Patterns for Fault Tolerant Software. Wiley Software Patterns Series. John Wiley & Sons. 

 



●​ Temporarily disabling affected functionality while maintaining critical services 
contains harm without complete service disruption. This works well for systems with 
modular functionality where some features can be disabled without affecting core 
services. Partial disabling requires architectural design supporting feature flags and 
graceful degradation.37 38 

●​ Implementing rate limiting or access restrictions reduces incident velocity without 
stopping service entirely. This works well when incidents scale with usage volume or 
when specific access patterns correlate with failures. Rate limiting requires monitoring 
infrastructure, detecting when limits engage, and mechanisms for adjusting limits 
dynamically. 

●​ Escalating human oversight keeps AI systems active but adds mandatory human 
review before outputs take effect. This works well when AI outputs are usually 
acceptable, and human review can catch problematic cases. Human oversight slows 
processing but leverages AI capabilities, ensuring problematic outputs are caught before 
causing harm. This approach requires available personnel with appropriate expertise and 
clear criteria for approving or rejecting AI outputs. 

Context-Dependent Action Selection 
The appropriate stabilization actions for any system depend on operational context, system 
criticality, assessed risk profile, and available alternatives. Mission-critical systems with no 
acceptable backup may require different stabilization approaches than systems with redundant 
alternatives. Customer-facing systems with high availability requirements face different 
constraints than internal productivity tools. 

Organizations should develop stabilization procedures specific to their deployment contexts 
rather than applying generic procedures across all systems. 

Overlap with Risk Management 
Much stabilization pre-planning overlaps with organizational risk management processes. Risk 
management identifies potential failures, assesses their likelihood and impact, and develops 
mitigation strategies. These risk mitigation strategies often become stabilization procedures when 
incidents occur. Organizations can leverage documentation and procedures from risk 
management efforts for incident response, reducing duplicated work and ensuring consistency 
between risk planning and incident response. 
 
Applying Stabilization Across Domains 
Table 5 illustrates how stabilization operates in both a mature complex system domain and in 
agentic AI systems. Both domains require pre-planned procedures enabling rapid response 
without improvisation, clear authorization for executing procedures under pressure, and 
communication protocols ensuring stakeholders receive timely notification. 

 

 

38 Edwards, Tamsyn & Lee, Paul. (2017). Towards Designing Graceful Degradation into Trajectory Based 
Operations: A Human-Machine System Integration Approach. 10.2514/6.2017-4487. 

37 Amazon Web Services. (2022). "REL05-BP01 Implement graceful degradation to transform applicable hard 
dependencies into soft dependencies." AWS Well-Architected Framework - Reliability Pillar. 

 



Table 5: Comparative Example: Stabilization in Financial Services and Agentic AI. 
Stabilization executes pre-planned procedures enabling rapid harm containment without 
improvisation under pressure. 

Comparative Example for Step 3​
Stabilization in Financial Services and Agentic AI 

Financial Services: Fraud Detection 
System 

Agentic AI: Customer Service Agent - 
International Expansion 

Incident Context: Fraud detection system generating 
22% false positive rate for small business accounts with 
international transactions. Blocking legitimate payments 
during customer travel. Assessment classified as Critical 
(Level II) requiring urgent response. 

Incident Context: Customer service agent performance 
degradation incident affecting German market 
operations. Stabilization measures active with mandatory 
human review for German market interactions. 
Investigation proceeding. Documentation and 
notification required. 

Pre-Planned Procedure Activated: Procedure 
FD-STAB-003: "False Positive Surge Protocol" 
pre-approved for execution by fraud operations manager 
when false positive rate exceeds 15% for any customer 
segment. Procedure documented, tested quarterly, and 
stored in incident response playbook. Authorization is 
pre-approved because the procedure does not disable 
fraud detection entirely. 

Pre-Planned Procedure Activated:  Internal procedure 
CS-STAB-004: "Market Launch Performance Protocol" 
pre-approved for execution by international operations 
director when quality metrics in new market operations 
fall below acceptable thresholds. Procedure developed 
during market expansion planning, tested in staging 
environment, stored in incident response playbook. 
Authorization pre-approved because procedure adds 
oversight without stopping service in expansion market. 

Execution Steps: Lower blocking threshold for 
affected customer segment to reduce false positives. 
Route all blocks affecting small business international 
accounts to manual review queue with 3 additional fraud 
analysts assigned. Configure monitoring to alert if 
legitimate fraud increases. Notify branch managers of 
temporary manual review process. 

Execution Steps: Activate mandatory human review for 
all German market customer interactions before final 
response delivery. Route German market queries to 
specialized review team with German language capability 
and market knowledge. Assign 5 additional 
German-speaking customer service specialists to review 
queue. Configure monitoring to track review queue 
depth and response time impacts. Notify German market 
operations team and business development stakeholders 
of temporary elevated oversight process. 

Exit Criteria: Remove manual review process and 
restore automated thresholds when: false positive rate 
returns below 10% for affected segment for 7 
consecutive days, OR permanent fix deployed and 
verified through A/B testing showing sustained 
improvement, OR 30 days elapsed requiring executive 
decision on extending temporary measures vs. 
alternative approaches. 

Exit Criteria: Remove mandatory human review and 
restore normal agent operation when: quality score gap 
between German and US markets narrows below 0.3 
points for 14 consecutive days, OR permanent fix 
deployed and verified through staged rollout in German 
market, OR 45 days elapsed requiring executive decision 
on extending elevated oversight vs. modifying system 
functionality or adjusting market entry timeline. 

Communication Protocol: Internal: Fraud operations 
team, branch managers, customer service, executive 
dashboard updated within 1 hour. External: Affected 
customers receive proactive notification: "We are 
reviewing international transaction patterns to improve 
service. You may experience brief delays on international 
payments while we verify transactions. Contact us 
immediately if urgent payment needed." Regulatory: 
Internal compliance review determines no immediate 

Communication Protocol: Internal: German market 
operations team, international business development, 
customer service leadership, executive leadership notified 
within 2 hours. External: No immediate public 
notification during stabilization phase. German market 
customers experiencing delays receive explanation: "Your 
inquiry requires specialized review to ensure highest 
quality response. A team member will respond within 4 
hours." Messaging emphasizes quality assurance, not 

 



Comparative Example for Step 3​
Stabilization in Financial Services and Agentic AI 

Financial Services: Fraud Detection 
System 

Agentic AI: Customer Service Agent - 
International Expansion 

reporting obligation, but incident logged for 
examination disclosure. 

system failure. Regulatory: Legal team reviews whether 
German consumer protection notification is required 
and determines that stabilization measures sufficient 
pending permanent correction. 

Stabilization Outcome: False positive rate for affected 
segment drops to 12% within 24 hours of procedure 
activation. Manual review queue processing 40 cases per 
day with 2-hour average turnaround. Zero legitimate 
fraud incidents detected in manual review process 
during first week. Customer complaints about blocked 
payments decrease 80%. Stabilization holds while 
investigation determines the root cause and develops a 
permanent correction. 

Stabilization Outcome:  All German market 
interactions receive human oversight before delivery. 
Average response time increases from 3 minutes to 35 
minutes for German market customers (still within 
service level agreements). Quality scores for German 
market improve to 3.8 (vs. 4.1 for US market, gap 
narrowed from 0.9 to 0.3 points). Customer complaints 
from German market decrease 60%. Review queue depth 
stabilizes at manageable levels. Market expansion 
timeline extended by 6 weeks to allow for permanent 
correction. Stabilization holds while investigation 
proceeds and permanent correction is developed. 

 

Preparedness Recommendations 
Organizations should develop stabilization capabilities before deploying AI systems: 

●​ Stabilization procedures documented for likely incident types, stored in accessible 
formats with version control 

●​ Clear authorization and escalation paths defining who can execute procedures and 
under what conditions 

●​ Backup systems or manual processes available and tested regularly to ensure 
functionality when needed 

●​ Personnel trained on procedure execution through tabletop exercises and periodic drills 
●​ Testing of procedures before system deployment to identify gaps or impractical steps 
●​ Integration with existing incident response connecting AI stabilization procedures to 

broader organizational response capabilities 
●​ Communication templates prepared for internal and external stakeholders enabling 

rapid notification 
●​ Monitoring infrastructure providing visibility into stabilization effectiveness and 

detecting unintended consequences 

Without this preparedness infrastructure, organizations must improvise stabilization responses 
during active incidents, leading to delays, inconsistent actions, and increased risk of stabilization 
measures causing additional problems. 

 

 



3.2.4 Step 4: Report and Document 

Action: Document incident details using standardized structures and notify appropriate stakeholders. 

Reporting and documentation serve multiple critical purposes simultaneously throughout the 
incident lifecycle. During active response, reports enable coordination across distributed teams 
and time zones. For investigation and analysis, they preserve evidence and system states that 
might otherwise be lost. For organizational learning and regulatory compliance, they create 
structured records enabling pattern recognition across incidents and demonstrating due 
diligence. Effective reporting should balance standardization for computational analysis with 
contextual narrative for human comprehension, while serving audiences ranging from immediate 
responders to future investigators to external regulators. 

Multiple Purposes Throughout the Lifecycle 
Reporting serves distinct purposes at different stages of incident response. Understanding these 
multiple purposes clarifies why reporting matters and what information different audiences need. 

●​ Response Coordination: Reporting provides shared understanding of incident status 
without requiring constant synchronous communication. Teams can reference 
documentation to understand completed actions, remaining tasks, and handoff points. 
This structured record proves essential when incidents span multiple shifts or require 
escalation to personnel not involved in initial response.  

●​ Investigation and Analysis: Reports preserve evidence supporting root cause analysis. 
Documentation of initial observations, system states, user reports, and environmental 
conditions provides essential data that might otherwise be lost as systems change, logs 
rotate, or memories fade. This proves particularly critical for AI incidents where 
non-deterministic behavior means incidents may not be reproducible.  

●​ Pattern Recognition: Standardized reporting structures enable computational analysis 
identifying patterns invisible in narrative-only reports. Organizations can detect recurring 
failure modes, common root causes, and systemic issues affecting multiple systems. This 
structured approach transforms individual incident reports into strategic intelligence 
about system reliability and risks.  

●​ Regulatory and Compliance: Reporting fulfills mandatory obligations, demonstrates 
due diligence, and supports regulatory oversight. Certain jurisdictions and sectors 
mandate incident reporting above specified thresholds. Documentation shows 
organizations responded appropriately and took required actions.  

●​ Stakeholder Communication: Reporting maintains trust through transparency, keeps 
affected parties informed, and documents remediation actions. Users affected by 
incidents need appropriate notification. Executives need awareness of significant 
incidents. Partners and customers may have contractual rights to incident information.  

●​ Institutional Learning: Reporting builds organizational knowledge, informs future 
prevention efforts, and contributes to ecosystem-wide learning. Organizations can review 
historical incidents when designing new systems, training personnel, or updating 
procedures. 

The value of incident reports extends far beyond immediate response. 

Standardized Structures Enable Analysis 
Effective reporting requires standardized structures balancing machine-readability with human 
comprehension. Purely narrative reports work well for human readers but cannot support 
computational analysis. Purely structured reports with rigid fields may miss important contextual 

 



nuances. Hybrid structures combining both approaches provide optimal utility. Key elements of 
effectiveness standardized reporting structures include: 

●​ Standardized fields enable computational analysis. Fields with consistent data types, 
controlled vocabularies,39 and defined formats allow automated processing. 
Organizations can query incidents by type, filter by affected populations, aggregate by 
severity, and analyze trends over time. 

●​ Controlled vocabularies ensure consistent terminology across incidents. When all 
reporters use the same terms for similar concepts, analysis becomes reliable. Controlled 
vocabularies prevent one person describing an incident as "hallucination" while another 
calls a similar incident "confabulation" while a third calls it "fabricated output" and a 
fourth describes it as "factually incorrect generation." 

●​ Consistent data formats allow integration across systems. Dates in standard formats, 
numerical values with defined units, and identifiers following consistent patterns enable 
data sharing and aggregation. Inconsistent formats require manual cleaning before 
analysis, introducing errors and delays. 

●​ Narrative fields capture context, circumstances, and nuances that structured categories 
cannot fully represent. Free-text descriptions allow reporters to explain unusual factors, 
describe unexpected observations, and provide qualitative assessments. Narrative fields 
give humans the flexibility to communicate what matters without forcing information 
into predefined categories. 

This hybrid approach transforms individual incident reports into datasets supporting systematic 
analysis while preserving the contextual richness humans need for understanding and 
decision-making. 

Multiple Report Versions 
Reports should exist in multiple versions with different sensitivity levels, each protected by 
appropriate access controls. Different audiences need different information and have different 
legal rights to access incident details. Below are some examples of different report versions: 

●​ Full Technical Reports serve internal incident response teams. These include sensitive 
technical details, proprietary information, complete forensic data, system architecture 
specifics, and security vulnerability details. Access should be limited to incident response 
team members, relevant technical staff, and individuals with operational need to know. 

●​ Sanitized Versions support regulatory reporting requirements or information-sharing 
agreements with other organizations. These remove commercial- or security-sensitive 
details, protect proprietary information, and limit security vulnerability exposure while 
preserving information needed for compliance and oversight. 

●​ Aggregate Statistical Summaries serve public transparency and sector-wide learning. 
These present patterns and trends without exposing individual organizational 
vulnerabilities or competitive information. Public summaries contribute to 
ecosystem-wide learning without creating security risks. 

●​ Access Control Infrastructure supports appropriate information sharing through 
role-based permissions ensuring individuals access only authorized report versions, audit 
trails tracking access for accountability, secure sharing channels protecting reports during 

39 Chipangila, B., Liswaniso, E., Mawila, A. et al. (2024). "Controlled vocabularies in digital libraries: challenges and 
solutions for increased discoverability of digital objects." International Journal on Digital Libraries, Vol. 25, pp. 
139–155 

 



transmission, and version control tracking how understanding progresses as 
investigations advance. 

Each report version serves distinct audiences with different information needs, legal rights to 
access, and responsibilities in the incident response ecosystem. 

Applying Reporting Across Domains 
Table 6 illustrates how reporting operates in both a mature complex system domain and in 
agentic AI systems. Both domains require standardized structures40 enabling analysis, multiple 
report versions for different audiences, and clear protocols for stakeholder notification. 

 

Table 6:  Comparative Example: Report and Document in Financial Services and 
Agentic AI. Standardized reporting structures enable both immediate stakeholder 
communication and long-term pattern analysis 

Comparative Example for Step 4​
Report & Document in Financial Services and Agentic AI 

Financial Services: Fraud Detection 
System 

AAgentic AI: Customer Service Agent - 
International Expansion 

Incident Context: Fraud detection system false 
positive incident affecting small business international 
accounts. Stabilization measures active. Investigation 
proceeding. Multiple stakeholders need notification 
and documentation. 

Incident Context: Customer service agent performance 
degradation incident affecting German market operations. 
Stabilization measures active with mandatory human 
review. Investigation proceeding. Documentation and 
notification are required. 

Full Technical Report (Internal): Complete system 
logs, rule configuration details, test data composition 
analysis, false positive pattern analysis by transaction 
type, customer segment characteristics, geographic 
distribution. Security team analysis of whether 
vulnerability exploitable. Technical root cause 
investigation findings (added after the Investigate and 
Analyze step). Complete timeline of detection, 
assessment, and stabilization actions. Personnel 
involved and decisions made. 

Full Technical Report (Internal): Complete conversation 
logs (anonymized but analyzable), model uncertainty scores 
by market, address parsing failure analysis by postal format 
type, database lookup patterns, tool use sequences. Analysis 
of training data market representation. Performance metrics 
by operational geography. Complete timeline of detection, 
assessment, and stabilization. Technical investigation of 
model behavior, prompt processing, tool interactions, and 
product catalog integration. 

Cross-Institution Sharing (Sanitized) Incident 
information shared with other financial institutions 
through Section 314(b). Enables other institutions to 
identify similar patterns affecting their customers. 
Uses standardized codes for activity types and 
behavioral indicators to enable pattern matching 
across institutions​
​
This case does not involve any detection of suspicious 

Regulatory Report (Sanitized): Incident summary for 
consumer protection authorities in German jurisdiction: 
incident type, affected market operations and interaction 
volume, service quality impact, timeline of detection and 
response, stabilization measures including elevated human 
review, investigation status, expected correction timeline. 
Removes: proprietary model architecture, training data 
specifics, competitive service delivery information, detailed 
system implementation. Report demonstrates due diligence 
in market entry compliance. 

40 Akbari Gurabi, M., Nitz, L., Bregar, A., Popanda, J., Siemers, C., Matzutt, R., & Mandal, A. (2024). Requirements 
for Playbook-Assisted Cyber Incident Response, Reporting and Automation. Digital Threats: Research and Practice, 
5(3), 1–11. 

 



Comparative Example for Step 4​
Report & Document in Financial Services and Agentic AI 

Financial Services: Fraud Detection 
System 

AAgentic AI: Customer Service Agent - 
International Expansion 

or illicit activity. It is unlikely to be shared with other 
organizations. 

Stakeholder Notifications: Executive: Critical 
incident brief with business impact, customer segment 
affected, stabilization status, investigation timeline. 
Branch Managers: Operational guidance for 
handling affected customer inquiries, manual override 
procedures, expected resolution. Customers: 
Proactive notification of transaction review process 
and alternative payment options. Compliance: 
Incident logged for regulatory examination 
preparation. 

Stakeholder Notifications: Executive: Critical incident 
brief with market expansion impact, affected geography 
and customer volume, stabilization through human review, 
business and reputational impact, investigation timeline. 
German Market Operations: Operational guidance for 
elevated review process, specialized team assignments, 
expected workload and response time targets. Affected 
Customers: Explanation during delayed response times 
emphasizing quality assurance. Legal/Compliance: 
Assessment of German consumer protection notification 
requirements and market-specific regulatory obligations. 
Business Development: Impact analysis on market 
expansion timeline and competitive positioning. 

Pattern Recognition Value: Incident report 
structure enables future analysis. Similar incidents 
affecting different customer segments can be 
identified through query on "false positive rate 
increase" + "customer segment." System can detect if 
rule updates correlate with incident patterns across 
multiple deployments. Aggregate analysis across 
financial institutions (if shared) could reveal 
industry-wide test data gaps. 

Pattern Recognition Value: Incident report structure 
enables future analysis. Similar incidents affecting different 
international markets identifiable through query on "market 
expansion" + "localization failure" + "address parsing." 
System can detect if training data gaps correlate with new 
market launches. Aggregate analysis across organizations 
could reveal systematic market readiness issues affecting 
international expansion initiatives, informing best practices 
for future market entries and highlighting common 
technical debt in US-trained systems expanding 
internationally. 

 

Preparedness Recommendations 
Organizations should create reporting infrastructure before deploying AI systems: 

●​ Standardized reporting templates developed with required fields, controlled 
vocabularies, and narrative sections 

●​ Access control infrastructure implemented with role-based permissions and audit 
capabilities 

●​ Clear procedures for different report versions specifying what information each version 
contains 

●​ Training on reporting requirements, ensuring personnel understand what to document 
and how 

●​ Integration with regulatory reporting systems enabling efficient compliance 
●​ Secure storage and sharing mechanisms protecting sensitive information 
●​ Incident tracking systems managing reports through the complete lifecycle from initial 

documentation through closure 
●​ Stakeholder notification protocols defining who gets notified, what information they 

receive, and timing requirements 

 



Without this preparedness infrastructure, organizations produce inconsistent reports that cannot 
support pattern analysis, fail to fulfill regulatory obligations on time, or share inappropriate 
information with audiences lacking proper authorization. 

3.2.5 Step 5: Investigate and Analyze 

Action: Determine root cause through systematic analysis. 

Investigation and Analysis identify the causes of incidents to inform effective corrective actions. 
Without understanding root causes, organizations cannot implement corrections that prevent 
recurrence. Analysis must be systematic and comprehensive, examining multiple levels from 
individual components through system-of-systems interactions. 

 

Investigate & Analyze: Using your preferred methods 

This framework frequently discusses Root Cause Analysis (RCA) as an investigative tool. 
However, organizations should select and apply the methods best suited to their specific 
operational needs, technical context, existing processes, and organizational culture. Root cause 
analysis represents one of many valid investigative methodologies. Other common approaches 
include Failure Modes and Effects Analysis (FMEA),41 Systems Theoretic Accident Modeling 
and Processes (STAMP),42 43 and Fault Tree Analysis (FTA).44 45 46 The investigation 
techniques described here are illustrative rather than prescriptive, and practitioners should 
adapt or substitute methodologies that align with their established practices and requirements. 

It can be advantageous to use multiple investigation and analysis methods. Each method has 
strengths and weakness. You may need to leverage multiple tools to effectively implement Step 
6 Correct. 

 

Multiple Levels of Analysis 
Effective incident investigation and analysis require analysis at three distinct but interconnected 
levels. Root causes may reside at any level or span multiple levels simultaneously. Organizations 
that focus exclusively on one level may miss critical contributing factors. 

Component-Level Issues 
Individual components may fail or perform incorrectly. Component-level analysis examines: 
 

46 NASA Software Engineering Handbook, Section 8.07 - Software Fault Tree Analysis, Created by Haigh, Fred, last 
modified on Jun 30, 2023. 

45 Vesely, W. & Goldberg, F. & Roberts, N. & Haasl, D.. (1981). Fault Tree Handbook. 216. 
44 Vesely, W. E., et al. (2002). Fault Tree Handbook with Aerospace Applications Content 

43 Nancy G. Leveson, Engineering a Safer World: Systems Thinking Applied to Safety. MIT Press, 2011. ISBN 
978-0-262-01662-9. 

42 Leveson, Nancy & Daouk, Mirna & Dulac, Nicolas & Marais, Karen. (2003). Applying STAMP in accident 
analysis. Workshop Investigation Reporting Incidents Accidents (IRIA). 

41 Stamatis, D.H. (2003). Failure Mode and Effect Analysis: FMEA from Theory to Execution (2nd Edition). ASQ 
Quality Press. 

 



●​ Specific model failures including incorrect predictions, hallucinations, or outputs 
inconsistent with training objectives 

●​ Training data issues such as insufficient representation, labeling errors, or distribution 
shifts 

●​ Configuration errors in system parameters, thresholds, or deployment settings 
●​ Individual tool or plugin failures in agentic systems where a specific tool malfunctions 

 
Integration-Level Issues 
Components that work correctly in isolation may fail when connected. Integration-level analysis 
examines: 
 

●​ API failures where component interfaces do not communicate correctly 
●​ Data format mismatches where one component's output cannot be correctly interpreted 

by another 
●​ Communication protocol errors between components 
●​ Version incompatibilities where component updates break existing connections 
●​ Authentication or authorization failures in component-to-component communication 

 
System-Level Problems 
The integrated system may exhibit behaviors not predictable from individual components or 
their connections. System-level analysis examines: 
 

●​ Workflow design issues that lead to cascading effects or inappropriate sequencing 
●​ Behaviors arising from component interactions rather than individual component or 

integration failures 
●​ Resource contention or bottlenecks where multiple components compete for limited 

resources 
●​ Timing dependencies where correct function requires specific ordering or 

synchronization 
●​ Feedback loops where system outputs influence subsequent inputs in unexpected ways 

 
System-of-Systems Concerns 
Incidents may propagate across organizational boundaries or result from interactions between 
independently operated systems. System-of-systems analysis examines: 
 

●​ Cascading failures that propagate through connected systems across organizational 
boundaries 

●​ Behaviors arising from complex interactions between systems that each function 
appropriately within their own context 

●​ Cross-organizational dependencies where one organization's system performance 
depends on another organization's system 

●​ Timing and synchronization issues in distributed systems where coordination across 
organizations proves difficult 

●​ Assumptions about external system behavior that prove incorrect under certain 
conditions 

 



The Critical Human Factors Dimension 
Humans and users are part of the system. Root causes or important contributing factors may 
reside in human factors rather than technical issues. Organizations that focus investigation and 
analysis exclusively on technical components miss critical failure modes that originate in how 
humans interact with AI systems,47 how organizations structure work around AI systems, or how 
incentives shape AI system use. 

Common Human Factor Issues 
Investigation and analysis should examine whether human factors contributed to the incident: 

●​ Inadequate training where users lack understanding of appropriate system use, 
capabilities, or limitations 

●​ Confusing interfaces that fail to communicate system capabilities and limitations clearly 
●​ Insufficient guidance on appropriate use contexts, operational boundaries, or when 

human judgment should override AI outputs 
●​ Procedures that incentivize workarounds when official processes prove too slow, 

cumbersome, or incompatible with operational realities 
●​ Organizational pressures prioritizing speed over accuracy, productivity over safety, or 

efficiency over quality 
●​ Misaligned incentives where rewards do not align with safe, appropriate, or responsible 

use 
●​ Inadequate staffing or time pressure that prevents proper oversight or verification of AI 

outputs 
●​ Authority gradients where junior staff feel unable to question or override AI 

recommendations 

Why Human Factors Prove Harder in AI Than Traditional Software 
Unlike traditional software with deterministic behavior, AI systems create unique challenges for 
users that make human factors more difficult to identify and address. 

AI systems produce outputs that may appear plausible while being incorrect. Users cannot rely 
on obvious error signals. Traditional software typically fails in detectable ways, displaying error 
messages or producing clearly wrong outputs. AI systems can confidently produce incorrect 
outputs that appear reasonable, requiring users to exercise judgment about when to trust system 
outputs. 

AI systems shift responsibility from system to user in ways that may not be clearly 
communicated. When an AI system produces a recommendation, users must often decide 
whether to accept, modify, or reject that recommendation. The system may not clearly indicate 
its confidence level or the circumstances under which its outputs should not be trusted. Users 
bear responsibility for decisions based on AI outputs without clear guidance on when human 
judgment should prevail. 

The boundary between appropriate and inappropriate use shifts with context. What constitutes 
appropriate use may depend on user expertise, operational conditions, and specific circumstances 
that change over time. Organizations cannot simply monitor for "incorrect use" because the 
definition of correct use proves context-dependent in ways that resist simple specification. 

47 Garcia-Martin, R., et al. (2024). "The impact of AI errors in a human-in-the-loop process." Cognitive Research: 
Principles and Implications, 9(1). 

 



Automation bias creates over-reliance48 49 on AI recommendations. Users tend to trust 
automated systems even when they should apply skepticism. This automation bias proves 
particularly problematic with AI systems because their outputs appear authoritative and may be 
difficult to verify without significant effort. 

Blame-Free Investigation Culture 
Organizations should foster blame-free investigation cultures that encourage honest reporting 
and surface human factors issues that purely technical analysis might miss.50 When people fear 
blame, they will not report near-misses, will hide workarounds they have developed, will not 
admit confusion about system operation, and root causes remain hidden. 

Blame-free culture recognizes that most incidents result from system design issues rather than 
individual failures. If a user misunderstands how to use a system, the interface or training may be 
inadequate. If users develop workarounds, official procedures may be impractical. If users ignore 
safety guidelines, incentives may be misaligned. Investigation should ask what system changes 
would prevent similar incidents rather than assigning individual responsibility for following 
inadequate procedures or working around poorly designed systems. 

This approach does not eliminate accountability for deliberate misuse or violation of clearly 
communicated policies. It distinguishes between mistakes that reveal system design problems and 
intentional violations of known requirements. 

Ongoing Learning  
Investigation and analysis extend beyond determining immediate root causes. Organizations 
should systematically collect information that improves future incident response, expands 
understanding of potential failure modes, and builds institutional knowledge about AI system 
behavior. 

●​ Staying Current on Failure Modes: Novel AI failure modes continue to emerge as 
capabilities expand and deployment contexts diversify. Organizations should 
systematically review research publications, industry reports, security advisories, and 
practitioner communities. This informs testing strategies, provides context for 
investigations, and updates understanding of AI system risks. Technical staff should 
allocate dedicated time for this knowledge gathering. 

●​ Capturing Insights for Process Improvement: During investigation and analysis, 
teams should document observations and insights that will inform process improvements 
in Step 6: Correct. These observations include what worked well in the response, what 
hindered effectiveness, and what assumptions prove incorrect. This documentation 
enables systematic improvement of both AI systems and incident response processes. 

Applying Multi-Level Investigation Across Domains 
Table 7 illustrates how investigation and analysis operate in both mature complex system 
domains and agentic AI systems. Both domains require systematic examination at multiple levels, 
from individual components through integration, system, and system-of-systems interactions. 
Human factors analysis proves essential in both contexts. Root cause determination at the 
appropriate level informs effective corrective actions. 

50 Dekker, S. (2012). Just Culture: Balancing Safety and Accountability (2nd Edition). CRC Press. 

49 Singh, A., et al. (2025). "Exploring automation bias in human–AI collaboration: a review and implications for 
explainable AI." AI & Society. 

48 Parasuraman, R., & Manzey, D.H. (2010). "Complacency and Bias in Human Use of Automation: An Attentional 
Integration." Human Factors, 52(3), 381-410. 

 



 

Table 7:  Comparative Example: Investigation and Analysis in Financial Services and 
Agentic AI. Investigation and analysis require examination at multiple levels, from 
individual components through system-of-systems interactions. 

Comparative Example or Step 5​
Investigation & Analysis in Financial Services and Agentic AI 

Financial Services: Structuring Detection Agentic AI: Customer Service Agent - 
International Expansion 

Incident Context: Multiple banks report unusual 
transaction patterns. Individual transactions appear 
innocuous but collectively suggest money laundering 
through structuring. 15 different customer accounts 
across 3 banks, $2M+ over 3 months. No single bank 
saw enough activity to trigger high-priority investigation. 

Incident Context: System monitoring detects 
performance degradation in German market operations 
(15% fallback-to-human rate vs. 2% baseline). Quality 
scores lower for German market. Approximately 50,000 
customers affected over three months. Multiple detection 
signals converged indicating systematic technical issues in 
new market launch. 

Component Level: Individual transaction monitoring 
examines each transaction for fraud indicators: amount 
exceeds threshold, transaction type inconsistent with 
account history. Transaction flagging rules operate 
correctly, each transaction evaluated independently. 
Components function as designed. Transactions under 
$10K threshold pass without flags. Analysis confirms: 
individual transactions appear legitimate when examined 
in isolation. 

Component Level: Natural language understanding 
model, address parser, and database lookup tool each 
function correctly within specifications when examined 
in isolation. Address parser performs well on US address 
formats (training distribution). Database lookup executes 
exact-match queries correctly. Product catalog returns 
valid results for US product terminology. Failures occur 
with inputs outside training distribution: German postal 
conventions (street number after street name, postal code 
with city prefix), German product terminology. 
Components work as designed but training data lacks 
representation of German market patterns. 

Integration Level: Account-level pattern analysis 
integrates transaction history to calculate customer risk 
scores. Customer risk scoring updates regularly based on 
integrated behavioral patterns. Analysis reveals: 
individual customer accounts show normal risk scores, 
transaction patterns consistent with stated business 
activities, no single account has high-risk indicators. Risk 
scores remain in normal ranges because activity 
distributed across multiple accounts prevents 
concentration that would elevate individual scores 

Integration Level: Address parser outputs incomplete 
data for German postal formats. Incomplete data fails 
database exact-match requirement. Lookup failure signals 
agent uncertainty. Integration lacks fallback mechanisms 
for partial matches or format variations. Tool chain 
amplifies initial parsing limitations: parsing error leads to 
lookup failure leads to agent escalation. Workflow design 
assumes US address format consistency. No graceful 
degradation for international address variations. Product 
catalog integration uses US product codes as primary 
keys, German market equivalents treated as exceptions 
requiring manual mapping. 

System Level: Bank's fraud detection system analyzes 
coordination patterns across different accounts and 
customers within the institution. Network analysis 
identifies: timing correlations between seemingly 
unrelated accounts, complementary transaction patterns, 
shared beneficiaries or intermediaries across multiple 
customers. Investigation reveals systematic 
coordination: 5 accounts show synchronized transaction 
timing, value patterns suggest deliberate structuring to 
keep individual accounts below risk thresholds, 

System Level: Agent workflow designed for 
confidence-based routing: high certainty enables direct 
resolution, uncertainty triggers human escalation. 
Workflow creates performance disparity because parsing 
struggles correlate with German market operations, 
resulting in 15% escalation rate versus 2% baseline. 
Training data predominantly contained US addresses and 
product terminology. Workflow assumption that 
ambiguity indicates request complexity proves incorrect 
when ambiguity correlates with market geography. Model 

 



Comparative Example or Step 5​
Investigation & Analysis in Financial Services and Agentic AI 

Financial Services: Structuring Detection Agentic AI: Customer Service Agent - 
International Expansion 

relationship mapping identifies shell company 
connections. Pattern indicates organized activity rather 
than independent customers. 

confidence calibration optimized for US market 
distribution, not internationally diverse inputs. 
System-level testing focused on US market scenarios. 
Market expansion planning underestimated localization 
requirements across multiple integrated components. 

System-of-Systems Level: Cross-institutional 
information sharing through Section 314(b) agreements 
reveals broader network. Bank A identifies structured 
deposits and shares the pattern. Bank B recognizes 
matching withdrawal patterns in their systems. Bank C 
identifies international wire transfers with similar timing. 
Aggregated analysis across institutions reveals 
multi-national criminal network: 15 accounts across 3 
banks, coordinated by same organization, systematic 
money laundering operation totaling $2M. Pattern 
invisible to any single institution becomes clear through 
cross-organizational data sharing and analysis 

System-of-Systems Level: Agent connects to customer 
database, shipping coordination system, refund 
processing system, and product catalog across 
organizational boundaries. Multiple systems share similar 
limitations (exact-match requirements, US format 
optimization), creating compounding effects. Training 
data pipeline sourced from historical customer service 
conversations that already exhibited US market bias in 
address and product terminology. Agent learned and 
potentially amplified existing patterns. Data pipeline, 
multiple integration points, and workflow design each 
optimized for US market without considering 
international expansion requirements. Pattern spans data 
science team, integration engineering team, and 
operations team, each optimized for their context 
without visibility into cross-system impacts on 
international scalability. 

 

Preparedness Recommendations 
Organizations should establish investigation capabilities before deploying AI systems. Effective 
investigation cannot be improvised after incidents occur. 

●​ Investigation and analysis team with multidisciplinary expertise: Assemble teams 
including data science expertise, domain expertise in the application area, operational 
expertise in deployment context, human factors expertise, and systems engineering 
expertise. Teams should be established and trained before incidents occur. 

●​ Investigation and analysis methodologies selected and documented: Choose 
appropriate investigation approaches (RCA, FMEA, STAMP, Fault Tree Analysis, or 
others) based on organizational context. Document procedures so teams can execute 
consistently during incidents. 

●​ Blame-free culture established and communicated: Create organizational norms that 
encourage honest reporting and surface human factors issues. Communicate explicitly 
that the investigation seeks system improvements rather than individual blame. 

●​ Procedures for literature review and failure mode collection: Establish processes for 
regularly reviewing research publications, security advisories, and practitioner discussions. 
Allocate time for technical staff to maintain current knowledge of AI failure modes. 

●​ Access to incident database: Provide investigation teams with access to previous 
incident reports within the organization. Analysis benefits from understanding whether 
current incidents match previous patterns or represent novel failure modes. 

 



●​ Documentation systems: Implement systems for capturing investigation findings, root 
causes, and insights. Structure documentation to support future analysis and 
organizational learning. 

Without this preparedness infrastructure, organizations lack the expertise, processes, and 
institutional knowledge needed to conduct systematic investigations that identify true root causes 
and inform effective corrective actions. 

3.2.6 Step 6: Correct 

Action: Implement solutions to address root causes, reduce incident recurrence, and mitigate realized harm. 

Correction transforms investigation findings into tangible improvements.51 52 Organizations 
should address both future prevention and past harm. Effective correction requires multiple 
types of actions: repairing systems to prevent recurrence, mitigating harm already caused, and 
updating organizational knowledge to improve both systems and processes. 

 

Not all incidents get corrected 

Not every AI incident requires or warrants correction. During the assessment phase, 
organizations carefully evaluate the severity, potential impact, and resources required to 
address an incident. Some incidents may be deemed too minor (low severity) to correct. 
Alternatively, the investigations phase could identify a correction whose cost may outweigh 
the potential risks. Severity classification frameworks help organizations make strategic 
decisions about which incidents demand immediate attention and which can be monitored or 
accepted as acceptable system variations.  

 

System Repair: Preventing Future Incidents 
Organizations reduce incident recurrence through several types of repairs. Each type serves 
different purposes based on incident severity, root cause certainty, implementation complexity, 
resource requirements, and time needed for permanent solutions. Possible repairs include: 
 

●​ Corrective Actions provide fundamental improvements addressing underlying failure 
modes rather than treating symptoms. Examples include retraining models with 
augmented datasets, redesigning workflows to eliminate problematic interaction patterns, 
changing system architectures to remove structural vulnerabilities, and implementing new 
monitoring capabilities. Corrective actions typically require significant resources and time 
but provide lasting reliability improvements.  

52 Wilson, P.F., Dell, L.D., & Anderson, G.F. (2023). Root Cause Analysis: A Tool for Total Quality Management (3rd 
Edition). ASQ Quality Press. 

51 International Organization for Standardization. (2015). ISO 9001:2015 Quality Management Systems - 
Requirements. ISO. 

 



●​ Workarounds provide temporary mitigation while permanent fixes are developed when 
corrective actions require extensive resources or lengthy development cycles. Examples 
include implementing additional human review steps for affected use cases, restricting 
system use to reliable contexts, adding verification procedures for problematic scenarios, 
and establishing approval requirements for sensitive decisions. Workarounds are typically 
process-oriented. 

●​ Patches address immediate symptoms when root cause investigation continues or 
underlying causes require extended time to resolve. Organizations should clearly identify 
patches as temporary measures requiring eventual replacement with corrective actions. 
Examples include input filters screening out problematic patterns, output validators 
checking for failure signatures, rate limits reducing exposure to failure conditions, and 
threshold adjustments that modify system behavior.  

●​ Guardrails establish boundaries or constraints, reducing conditions leading to incidents. 
Guardrails may remain permanent, serving as defense-in-depth safety measures. 
Examples include restricting tool access to reduce potential harm, limiting system 
autonomy in high-stakes decisions, requiring human approval for actions exceeding 
thresholds, and implementing hard constraints preventing certain failure modes. 

Realized Harm Mitigation 
Beyond system repair, the correction step addresses harm that has already occurred. This differs 
from Step 3: Stabilize, which stops ongoing harm. Step 6: Correct addresses harm that happened 
before stabilization and provides remediation to affected parties. Possible harm mitigation 
approaches include: 

●​ Affected Party Notification informs affected parties of the incident and its resolution, 
demonstrating accountability and transparency. Effective notification includes an 
explanation of what happened, a description of corrective actions taken, communication 
of how similar incidents will be prevented, and establishment of contact points for 
questions or concerns. Notification timing and content depend on incident severity, 
regulatory requirements, and affected party characteristics.  

●​ Correction of Erroneous Decisions reviews and corrects AI decisions that affected 
individuals or organizations where appropriate. This may include reversing incorrect loan 
denials, updating inaccurate records, re-reviewing impacted cases with corrected 
processes, and providing alternatives where original determinations were inappropriate. 
Organizations should establish criteria balancing the harm from incorrect decisions 
against the operational burden of review.  

●​ Remediation provides compensation or redress for harm suffered. Financial 
remediation may include refunds for incident-related charges, service credits for poor 
quality, expedited processing to compensate for delays, or direct compensation where 
appropriate and legally permissible. Non-financial remediation may include priority 
access to improved services, extended support for affected parties, or procedural 
accommodations. Remediation decisions should consider incident severity, harm 
magnitude, affected party circumstances, and organizational capabilities.  

●​ Documentation records all remediation actions for accountability to affected parties, 
stakeholders, and regulators. Documentation should record what notifications were sent 
and when, which decisions were reviewed and corrected, what remediation was provided 
to whom, and how affected parties were supported through the resolution process. 

 



Organizational Knowledge Updates 
During the Correct step, organizations should update policies, training, documentation, and 
testing protocols based on lessons learned during incident response, transforming individual 
incidents into institutional learning. Organizations should consider doing the following: 

●​ Lessons Learned Collection systematically documents what worked well (detection 
mechanisms, assessment criteria, stabilization procedures, investigation approaches), what 
hindered response (preparedness gaps, inadequate tools, team handoff delays, 
information access difficulties), and surprises encountered (incorrect assumptions, 
unexpected failure modes, unanticipated interactions). Documentation supports analysis 
across multiple incidents to identify recurring issues.  

●​ Policy Updates revise usage policies clarifying appropriate system use, update 
operational procedures incorporating incident lessons, enhance oversight requirements 
for sensitive applications, and document new safeguards. Updated policies are 
communicated through training, documented in accessible formats, and incorporated 
into operational guidance.  

●​ Training Program Revisions address identified knowledge gaps, document new 
workarounds or procedures, incorporate lessons about system behaviors discovered 
during investigation, and update guidance on appropriate system use based on observed 
failure modes.  

●​ System Documentation Updates document newly discovered failure modes and 
triggering conditions, update descriptions of known limitations based on operational 
experience, revise operational guidance to avoid identified risks, and clarify capability 
boundaries that may have been misunderstood.  

●​ Assessment and Testing Protocol Modifications add test cases reproducing incident 
conditions, revise monitoring thresholds based on observed failure patterns, adjust 
severity criteria if incidents revealed inadequacies, and expand assessment scope to cover 
previously unconsidered scenarios.  

●​ Cross-Organizational Sharing spreads lessons across internal teams deploying similar 
systems and enables external sharing through industry groups, standards bodies, or 
research collaborations.53 External sharing requires agreements protecting sensitive 
information but enables field-wide learning about common failure modes and effective 
corrective approaches. 

Applying Correction Across Domains 
Table 8 illustrates how correction operates in both a mature complex system domain and in 
agentic AI systems. Both domains require system repairs to prevent recurrence, mitigation of 
harm already caused, and organizational knowledge updates to improve both systems and 
processes. Effective correction addresses past harm while preventing future incidents. 

 

 

53 Garvin, D.A. (1993). "Building a Learning Organization." Harvard Business Review, 71(4), 78-91. 

 



Table 8:  Comparative Example: Correct in Financial Services and Agentic AI. 
Correction requires multiple types of actions addressing system reliability, harm to 
affected parties, and organizational learning. 

Comparative Example for Step 6​
Correct in Financial Services and Agentic AI 

Financial Services: Structuring Detection Agentic AI: Customer Service Agent - 
International Expansion 

Incident Context: Multiple banks detected 
coordinated structuring pattern: 15 accounts across 3 
banks, $2M over 3 months, deliberate distribution to 
avoid detection thresholds. Investigation revealed 
sophisticated money laundering network exploiting 
lack of cross-bank visibility. 200+ legitimate small 
business accounts incorrectly frozen during initial 
detection attempts. 

Incident Context: System monitoring detected 
performance degradation in German market operations 
(15% fallback-to-human rate vs. 2% baseline). Quality 
scores lower in new market (3.2 vs. 4.1 out of 5). 
Approximately 50,000 customers affected over three 
months. Root cause: US-centric training data, address 
parsing optimized for US formats, workflow design 
assumptions based on US market patterns, insufficient 
localization planning for market expansion. 

Corrective Action: Implement cross-bank pattern 
detection algorithms. Deploy network analysis 
capabilities analyzing account relationships and 
coordination patterns. Lower thresholds for structured 
transaction detection. Enhance customer due diligence 
procedures for high-risk account types. 

Corrective Action: Augment training data with German 
market examples through targeted data collection and 
synthetic data generation representing German postal 
conventions and product terminology. Implement 
international address parsing with format detection and 
country-specific parsing rules. Add fuzzy matching for 
address database lookups with cascade strategies (exact 
match → fuzzy match → manual review). Redesign 
workflow to reduce escalation triggered by format 
ambiguity. Add market-specific confidence calibration. 
Retrain model with balanced dataset including 
representative international market data. Complete 
product catalog localization mapping German 
terminology to system codes. 

Workarounds & Guardrails: Enhanced manual 
review for transactions matching structuring indicators 
while automated systems updated. Mandatory human 
approval for account freezes affecting small business 
accounts. Temporary lower thresholds with elevated 
false positive review. 

Workarounds & Guardrails: Continue enhanced human 
review for German market interactions during retraining 
and deployment cycle. Proactive outreach for escalated 
cases to maintain customer relationships. Expedited 
resolution pathways for German market queries. Ongoing 
market-specific performance monitoring with automatic 
alerts for performance disparities exceeding thresholds. 
Mandatory international market analysis in all future 
system testing and deployment planning. Established 
market readiness assessment checklist for future 
geographic expansions. 

Notification & Remediation: Customer notification 
explaining transaction review process, alternative 
payment options during review, expected resolution 
timeline. Branch manager guidance for handling 
inquiries. Account unfreezing with expedited 
processing. Business interruption compensation where 

Notification & Remediation: Proactive customer 
outreach to German market customers apologizing for 
service quality issues and explaining improvement 
initiatives. Expedited resolution of pending customer 
service issues. Service credits offered to affected 
customers. Clear escalation path to specialized German 

 



Comparative Example for Step 6​
Correct in Financial Services and Agentic AI 

Financial Services: Structuring Detection Agentic AI: Customer Service Agent - 
International Expansion 

appropriate. Compliance documentation for regulatory 
examination. 

market support team established. Priority handling for 
German market queries during transition period. Account 
management outreach to key early adopter customers in 
market expansion. 

Decision Correction: Review all frozen accounts 
from affected period. Reverse incorrect fraud 
determinations. Restore account access. Clear negative 
marks from internal systems. Provide documentation 
to customers confirming accounts in good standing. 

Decision Correction: Review all German market cases 
from affected period involving extended resolution times 
or customer dissatisfaction. Re-process queries that 
received suboptimal responses with corrected system. 
Proactive outreach with corrected information where 
original responses were inadequate. Update customer 
interaction records to remove negative service indicators 
that resulted from system limitations rather than customer 
issues. Financial remediation where appropriate for service 
failures. 

Policy & Training Updates: Update fraud detection 
policies to include network analysis requirements. 
Revise alert investigation procedures for distributed 
patterns. Train analysts on structuring detection 
techniques. Document new detection capabilities and 
procedures. Update testing protocols to include 
multi-account scenarios. 

Policy & Training Updates: Revise AI development 
practices mandating market representation analysis in 
training data for all international deployments. Require 
international market readiness testing before launches. 
Establish market-specific performance monitoring as 
standard practice for geographic expansion. Train 
customer service staff on recognizing system limitations in 
international contexts and appropriate escalation 
procedures. Empower staff to override system 
recommendations immediately when market-specific 
issues identified. Update market expansion procedures to 
include comprehensive localization assessment across all 
system components. Create market entry checklist 
covering data representation, address format handling, 
product catalog localization, and workflow testing. 

Cross Organizational Sharing: Share structuring 
pattern indicators with other financial institutions 
through Section 314(b) agreements. Contribute to 
industry-wide detection capability improvement. 
Participate in information exchange agreements. 
Pattern descriptions shared without customer 
identifiers or proprietary detection methods 

Cross Organizational Sharing: Share lessons about 
training data representation challenges and international 
market localization requirements through AI industry 
professional organizations. Contribute findings to 
standards development organizations working on 
international AI deployment best practices. Participate in 
information sharing about common technical debt in 
US-developed systems expanding internationally. Publish 
anonymized case study on market expansion preparation 
requirements for AI systems. Contribute to development 
of market readiness assessment frameworks that benefit 
industry-wide international expansion efforts. 

 

 



Preparedness Recommendations 
Organizations should establish correction capabilities before deploying AI systems. Effective 
correction requires processes, authorities, and resources that are difficult to create during 
incident response. 

●​ Defined processes for each repair type: Document procedures for implementing 
corrective actions, workarounds, patches, and guardrails. Define approval authorities and 
resource allocation for each type. 

●​ Clear criteria for selecting repair: Establish guidelines for selecting among repair types 
based on incident severity, root cause certainty, implementation complexity, resource 
requirements, and time constraints. 

●​ Harm notification and remediation procedures: Create templates and protocols for 
notifying affected parties. Establish criteria for decision correction and remediation. 
Define authorities who can approve financial remediation. Document processes for 
tracking remediation through completion. 

●​ Documentation and knowledge management systems: Implement systems 
capturing correction actions, remediation provided, and lessons learned. Structure 
documentation to support analysis across incidents. Ensure documentation accessible to 
personnel who need it for future incident response and system improvement. 

●​ Training update processes: Establish procedures for revising training programs based 
on incident findings. Define authorities who approve training changes. Create 
mechanisms ensuring updated training reaches all relevant personnel. 

●​ External sharing agreements: Where appropriate, establish agreements with industry 
groups, standards bodies, or peer organizations for mutual information exchange. Define 
what information can be shared externally and approval processes for sharing. Protect 
sensitive information while enabling ecosystem learning. 

Without this preparedness infrastructure, organizations struggle to implement timely corrections, 
fail to mitigate harm to affected parties effectively, and miss opportunities to transform incidents 
into organizational learning that prevents recurrence. 

3.2.7 Step 7: Verify 

Action: Test and validate corrections, then monitor for effectiveness. 

Verification closes the incident response loop by ensuring corrective actions actually improve 
system reliability rather than introducing new issues or failing to address root causes. Without 
verification, organizations cannot know if their corrections work as intended or if similar 
incidents will recur. 

Testing Validates Corrections 
Testing confirms that corrections mitigate incident recurrence without creating new problems. 
For AI-enabled systems, verification cannot rely solely on pass/fail tests due to non-deterministic 
behavior and context-dependency. Systems may produce different outputs for the same inputs, 
behaviors shift with operational conditions, and system-level behaviors cannot always be 
predicted from component testing. Organizations should verify corrections through both 
immediate validation and sustained monitoring. Verification approaches may include: 
 

 



●​ Assessing Distributional Shifts rather than expecting deterministic improvement.54 
Organizations should measure reduced incident rates, fewer incidents of the same type 
over time, improved accuracy metrics on previously challenging input categories, reduced 
false positive and false negative rates in production environments, improved 
performance on previously problematic input types, and increased robustness to edge 
cases that previously caused failures. This approach requires statistical analysis over 
multiple trials to determine whether observed improvements are statistically significant 
rather than random variation.  

●​ Immediate Validation tests corrections before full deployment using staged rollouts 
that gradually expand to the full user base, A/B testing capabilities comparing corrected 
versus uncorrected versions where ethically appropriate, close monitoring during initial 
deployment with defined rollback criteria, and rapid reversion capability if verification 
reveals problems.55 Immediate validation catches obvious problems before they affect all 
users, though some issues only become apparent over extended operation.  

●​ Sustained Monitoring confirms corrections remain effective over time and detects 
delayed issues. Sustained monitoring tracks whether correction effectiveness degrades 
over time, identifies new failure modes introduced by corrections, and confirms 
long-term reliability improvement. Sustained monitoring should integrate with 
ongoing detection processes in Step 1, creating a continuous improvement loop.35 

Processes for Closing Incident Reports 
Organizations should require verification confirming correction effectiveness before marking 
incidents resolved. Closure criteria should include correction implemented and deployed, 
validation testing completed successfully, monitoring period completed without recurrence, 
documentation updated to reflect changes, and lessons learned captured and disseminated. 

Simply implementing a correction does not constitute incident resolution. Verification provides 
evidence that the correction actually works and improves system reliability and reduce incidents 
as intended. 

Tracking Reliability and Incident Metrics Over Time 
Tracking reliability and incident metrics provides empirical evidence of system improvement,56 
transforming incident response from reactive firefighting into proactive reliability engineering 
that demonstrates systematic progress to executives, stakeholders, and regulators. 
Recommendations for reliability tracking include: 
 

●​ Select Appropriate Metrics matching system types and operational contexts. Common 
metrics include Mean Time Between Incidents, Fix Effectiveness Rate (the proportion of 
corrected incidents that do not recur), Mean Time to Respond (time from detection to 
stabilization), and system-specific metrics tailored to applications or use cases. 
Organizations should select metrics that meaningfully capture system reliability and 
incident reduction in their operational contexts.  

●​ Establish Baselines by measuring system performance before implementing corrective 
actions. Organizations should document current incident rates, performance metrics, and 
reliability indicators. Organizations should set improvement targets based on incident 
severity and organizational risk tolerance to enable comparison showing whether 
corrections actually improve reliability.  

56 O'Connor, P., & Kleyner, A. (2012). Practical Reliability Engineering (5th Edition). Wiley. 

55 Kim, G., Humble, J., Debois, P., Willis, J., & Forsgren, N. (2021). The DevOps Handbook (2nd Edition). IT 
Revolution Press. 

54 Montgomery, D.C. (2019). Introduction to Statistical Quality Control (8th Edition). Wiley. 

 



●​ Track Trends by monitoring selected metrics over time, comparing performance before 
and after corrections. Organizations should identify gradual degradation indicating 
declining correction effectiveness. Organizations should track trends across multiple 
incidents to determine whether overall system reliability and incident metrics improves 
beyond resolving individual incidents.  

●​ Report on Trends through internal reporting to leadership, demonstrating system 
improvement, regulatory reporting where required by compliance obligations, public 
transparency where appropriate to maintain stakeholder trust, and future prevention 
efforts showing which types of corrections prove most effective. 

 

What if metrics do not improve? 

It is possible that an organization completes Step 5 (Investigate & Assess) and Step 6 
(Correct) but not system performance is seen during Step 7 or during ongoing monitoring 
efforts. This most likely means the correction was not effective or the investigation and 
assessment came to the wrong conclusion.  

When this happens, organizations should revisit Step 5 (Investigate & Assess) and Step 6 
(Correct). They should consider using a different analysis method for Step 5. They should 
develop a hypothesis for why the correction was ineffective and develop a new corrective 
approach. 

 

Applying Verification Across Domains 
Table 9 illustrates how verification operates in both a mature complex system domain and in 
agentic AI systems. Both domains require immediate validation of corrections before full 
deployment and sustained monitoring to confirm long-term effectiveness. Reliability metrics 
provide empirical evidence of improvement. 

Table 9:  Comparative Example: Verify in Financial Services and Agentic AI.Verification 
requires both immediate validation and sustained monitoring across domains. 

Comparative Example for Step 7​
Verify in Financial Services and Agentic AI 

Financial Services: Structuring Detection Agentic AI: Customer Service Agent - 
International Expansion 

Incident Context: Implemented cross-bank pattern 
detection, network analysis capabilities, real-time 
information sharing through Section 314(b) agreements. 
Enhanced customer due diligence procedures. Corrected 
harm to 200+ incorrectly frozen accounts. 

Incident Context: Implemented training data 
augmentation with German market examples, 
international address parsing with format detection and 
fuzzy matching, workflow redesign to reduce 
format-triggered escalation, product catalog localization. 
Enhanced human review during transition. Corrected 
erroneous responses and provided remediation to 
affected customers. 

 



Comparative Example for Step 7​
Verify in Financial Services and Agentic AI 

Financial Services: Structuring Detection Agentic AI: Customer Service Agent - 
International Expansion 

Immediate Validation: Test new detection algorithms 
on historical data containing known structuring patterns. 
Verify algorithms detect previously missed cases. Run 
simulation with test accounts exhibiting structuring 
behavior across multiple banks in a controlled 
environment. Confirm detection without excessive false 
positives. Staged rollout with tracked detection rates and 
false positive rates during pilot. 

Immediate Validation: Test retrained model on 
held-out dataset with German address formats and 
product terminology. Measure fallback rates and quality 
scores across markets. A/B testing: deploy corrected 
system to 5% of German market traffic initially, compare 
against baseline system performance. Week 1: 5% traffic, 
Week 2: 25% traffic, Week 4: 50% traffic, Week 6: 100% 
traffic if metrics improve. Monitor market-specific 
performance metrics daily during rollout with defined 
rollback criteria if performance degrades. 

Sustained Monitoring: Track detection rates for 
structured transaction patterns monthly. Monitor false 
positive rates by customer segment and geographic 
region. Quarterly review of structuring techniques 
identified, assessing whether new variations emerge. 
Annual assessment of cross-bank information sharing 
effectiveness. Continue analyst training on evolving 
structuring methods. 

Sustained Monitoring: Weekly market-specific 
performance analysis for first 3 months post-deployment 
comparing German market to US market baseline. 
Monthly operational reviews examining fallback rates, 
quality scores, customer satisfaction across all 
international markets. Continuous automated monitoring 
with alerts for cross-market performance disparities 
exceeding 2 percentage points. Quarterly market 
expansion readiness assessments for future geographic 
launches. 

Metrics Tracking: Before Correction: Structuring 
pattern detection rate: 2% of examined networks, Mean 
Time to Detect: 90 days from first transaction, 
Cross-bank coordination: detected in 1% of shared 
cases. After Correction: Detection rate >3%, Mean 
Time to Detect <85 days, Cross-bank coordination 
detected >2% of cases. 

Metrics Tracking: Before Correction: Fallback rate 
disparity: 13 percentage points (15% German market vs 
2% US market), Quality score gap: 0.9 points (3.2 vs 
4.1), Customer satisfaction gap: 1.2 points, Complaint 
rate: 3x higher in German market. After Correction: 
Fallback rate disparity <2 percentage points across 
markets, Quality score gap <0.2 points, Customer 
satisfaction gap <0.3 points, Complaint rates equalized 
across markets, Market expansion timeline back on track. 

Closure: Incident closed after 6-month monitoring 
period confirms sustained improvement. Detection 
capability meets targets. False positive rate acceptable 
with ongoing optimization. Documentation updated 
with new detection procedures. Lessons shared. 
Correction deemed effective. 

Closure: .Incident closed after 6-month monitoring 
period demonstrates sustained improvement across 
international markets. Market-specific performance 
within acceptable ranges. Automated monitoring 
confirms ongoing quality consistency. Documentation 
updated with international market readiness 
requirements and localization best practices. Lessons 
incorporated into market expansion playbooks. 
Correction deemed effective with continued 
market-specific monitoring as standard practice for all 
geographic expansions. German market expansion 
achieves business targets with 8-week delay from original 
timeline. 

 

 



Preparedness Recommendations 
Organizations should establish verification capabilities before deploying AI systems. Effective 
verification requires infrastructure, processes, and metrics that cannot be created during incident 
response. 

●​ Testing infrastructure: Implement staging environments where corrections can be 
tested before production deployment. Establish rollback procedures for rapid reversion if 
verification reveals problems. Create test datasets representing diverse operational 
conditions. 

●​ Reliability metrics defined and automated: Select metrics appropriate for system 
types and operational contexts. Implement automated collection and calculation of 
reliability metrics. Define baseline measurement procedures. Establish statistical 
significance thresholds for assessing improvement. Document detailed metric definitions 
and calculation methods. 

●​ Regular metric review process: Schedule periodic reviews of reliability metrics with 
appropriate stakeholders. Define escalation procedures when metrics indicate 
degradation. Establish accountability for acting on metric trends. Create processes for 
updating metrics as systems and contexts evolve. 

●​ Monitoring systems configured: If necessary, extend detection systems established in 
Step 1 to track correction effectiveness. Configure alerts for performance degradation or 
unexpected behaviors following corrections. If relevant, implement focused monitoring 
for specific populations or business segmentations. Create dashboards visualizing 
reliability trends over time. 

●​ Integration with detection systems: Ensure verification monitoring feeds back into 
detection systems for continuous improvement. Configure systems to detect similar 
failure patterns earlier. Update detection thresholds based on verified correction 
effectiveness. Close the loop between verification and detection. 

●​ Procedures for incident closure: Define closure criteria requiring verification evidence. 
Establish approval processes for marking incidents resolved. Document evidence needed 
for closure, including validation testing results, monitoring period completion, and 
absence of recurrence. Create templates for closure documentation. 

Without this preparedness infrastructure, organizations cannot determine whether corrections 
actually work, cannot demonstrate improvement to stakeholders, and cannot close the incident 
response loop systematically. 

3.3 Integration with Existing Frameworks 

This framework complements rather than replaces existing standards and frameworks. 
Organizations already invest in risk management, cybersecurity, and quality assurance processes. 
The AI incident response framework builds on these investments while extending capabilities for 
AI-specific characteristics. 

This framework complements existing standards and frameworks rather than replacing them. 
The NIST AI Risk Management Framework57 provides high-level governance guidance. The 
NIST Cybersecurity Framework58 addresses security incident response. ISO standards cover 

58 National Institute of Standards and Technology. (2018). Framework for Improving Critical Infrastructure 
Cybersecurity, Version 1.1. NIST. 

57 National Institute of Standards and Technology. (2023). Artificial Intelligence Risk Management Framework (AI 
RMF 1.0). NIST AI 100-1. 

 



information security and risk management.59 60 Where these frameworks identify what 
organizations should do, this framework provides operational detail for how to implement AI 
incident response capabilities, with particular attention to AI-specific characteristics like 
non-determinism, context-dependency, and system-of-systems interactions. 

Organizations can integrate AI incident response within existing risk management and IT service 
management frameworks. However, AI incident response requires extensions to accommodate 
AI-specific characteristics. Traditional severity classifications need augmentation for factors such 
as model drift and performance degradation, privacy violations through data leakage, and 
context-dependent failures. Root cause analysis requires expertise in AI system architectures and 
behaviors. Verification must account for non-deterministic performance. 

Emerging regulatory requirements and sector-specific standards shape implementation. The EU 
AI Act61 establishes incident reporting obligations for high-risk AI systems. This framework 
supports regulatory compliance through standardized reporting structures, systematic incident 
handling, and clear delineation of responsibilities across developers and deployers. Sector-specific 
standards in financial services, healthcare, and defense take precedence where they specify more 
stringent requirements. Organizations subject to multiple regulatory requirements benefit from 
standardized internal processes that can feed multiple external reporting obligations. 

 

How much to customize 

Organizations can adapt response procedures to specific contexts, maintain sector-specific 
requirements appropriate to their risks, and customize the seven-step loop for their 
operational needs. They should simultaneously contribute to collective ecosystem capabilities 
through standardized elements enabling coordination, information sharing, and field-wide 
learning.  

This balance between customization for local needs and standardization for ecosystem 
benefits represents a core challenge in building mature AI incident response capabilities. 
Organizations should resist both the temptation to customize everything (losing ecosystem 
benefits) and the temptation to standardize everything (losing contextual appropriateness). 
The framework presented in this white paper provides common structure while preserving 
necessary flexibility 

 

 
 
 

61 European Parliament and Council. (2024). Regulation (EU) 2024/1689 laying down harmonised rules on artificial 
intelligence (Artificial Intelligence Act). Official Journal of the European Union. 

60 International Organization for Standardization. (2023). ISO/IEC 42001:2023 - Artificial intelligence — 
Management system. ISO. 

59 International Organization for Standardization. (2023). ISO/IEC 23894:2023 - Artificial intelligence — Guidance 
on risk management. ISO. 

 



Integration Strategy 
Organizations should integrate AI incident response with existing processes rather than creating 
isolated systems. Practical integration includes: 

●​ Leverage Existing Infrastructure: Use established incident tracking systems, escalation 
procedures, communication protocols, and evidence preservation processes. Extend 
these systems for AI-specific data rather than building parallel infrastructure. 

●​ Extend Severity Classifications: Augment existing severity frameworks with 
AI-specific factors, including output quality inconsistencies and systematic error patterns, 
privacy violation considerations, context-dependent failure assessment, and harm 
accumulation across interactions. Existing severity levels remain valid but require 
additional criteria for AI incidents. 

●​ Augment Root Cause Analysis: Incorporate methodologies for non-deterministic 
behavior analysis, multi-level investigation across components through 
system-of-systems, human factors analysis specific to AI system interactions, and analysis 
in the context of other reported incidents. Traditional root cause analysis techniques 
apply but need extension for AI characteristics. 

●​ Adapt Verification Approaches: Modify verification to assess distributional shifts 
rather than pass/fail outcomes, implement staged rollouts with demographic or 
population-based monitoring, track reliability metrics appropriate for AI systems, and 
verify correction effectiveness statistically over time. 

 

 



Section 4: The Ecosystem: Key Stakeholders and Their Roles 

Individual organizations can implement the seven-step framework presented in Section 3 and 
achieve meaningful improvements in their AI incident response capabilities. Organizations with 
mature processes can systematically detect incidents, respond effectively, and learn from failures 
to improve reliability over time. However, the full potential of AI incident response emerges 
when multiple stakeholders coordinate within an interconnected ecosystem. 

Ecosystem coordination enables capabilities that individual organizations cannot achieve alone. 
Pattern recognition across incidents reveals systemic issues invisible within any single 
organization. Shared learning about failure modes accelerates reliability improvement across the 
field. Standardized reporting structures enable both computational analysis and regulatory 
oversight while protecting proprietary information. Independent verification provides credibility 
for incident disclosures that self-reporting cannot match. 

This section explains why ecosystem coordination multiplies the benefits of individual incident 
response efforts (4.1), distinguishes incident types requiring different stakeholder involvement 
(4.2), and details the roles and capabilities of six stakeholder categories across the incident 
response process (4.3). Organizations can begin implementing incident response independently 
while simultaneously contributing to and benefiting from ecosystem development. 

4.1 Why Ecosystem Coordination Multiplies Benefits 

Individual organizations face natural constraints that limit what they can see and learn from AI 
incidents. Developers possess deep technical knowledge but cannot observe how their models 
perform across diverse deployment contexts. Deployers understand operational environments 
but may lack expertise for model-level root cause analysis. Users experience system performance 
in specific contexts but may not recognize AI involvement in decisions. Oversight bodies can 
mandate reporting but depend on others for incident visibility. Each stakeholder sees only 
incidents affecting their own users or systems, and no single entity holds complete authority or 
incident volume needed to identify patterns reliably. 

These limitations are inherent characteristics of how AI systems are developed, deployed, and 
used. AI systems cross organizational boundaries by design. Foundation models serve thousands 
of deployers. Each deployer configures and customizes systems for specific contexts. Users 
interact with resulting systems in ways reflecting their unique needs and circumstances. This 
distributed structure creates blind spots where no single organization can see the complete 
picture. 

What Ecosystem Coordination Enables 
When different stakeholders play coordinated roles with clear responsibilities and 
communication channels, the ecosystem achieves capabilities beyond what any individual 
organization can accomplish. In particular, an ecosystem can enable: 

●​ Pattern recognition across incidents.Individual organizations see incidents affecting 
only their users or systems. Aggregating incidents across organizations reveals patterns 
invisible to any single entity. Recurring failure modes in specific operational contexts, 
cascading failures propagating through interconnected systems, and sophisticated attacks 
distributed across multiple targets become visible only through cross-organizational 
analysis. 

 



●​ Shared learning about failure modes. As researchers, developers, and deployers 
discover new ways AI systems can fail or cause harm, sharing this knowledge accelerates 
improvement across the field. Organizations benefit from lessons learned elsewhere 
without having to experience every possible failure mode themselves. This collective 
intelligence reduces duplicated effort and speeds reliability improvement. 

●​ Systematic improvement in AI system reliability and incident reduction across the 
field. Individual organizational improvements remain isolated without mechanisms for 
sharing insights. Ecosystem coordination enables field-wide reliability improvements by 
spreading effective mitigation strategies, successful investigation approaches, and 
practical preparedness measures across organizations. 

Building What Doesn't Yet Exist 
This ecosystem does not exist in a mature form. While individual components operate in various 
sectors and contexts, the coordinated structure with clear roles, established communication 
channels, and standardized reporting, enabling pattern recognition, requires deliberate 
development. Building this ecosystem is essential for achieving the full benefits of systematic AI 
incident response. The following sections describe the stakeholders who should participate and 
the roles they should play. 

 

The Ecosystem Requires Deliberate Development 

This coordinated AI incident response ecosystem does not exist in a mature form. While 
individual components operate in various sectors and contexts, the coordinated structure with 
clear roles, established communication channels, and standardized reporting, enabling pattern 
recognition, requires deliberate development. Building this ecosystem is essential for achieving 
the full benefits of systematic AI incident response. Organizations can begin implementing 
incident response independently while simultaneously contributing to and benefiting from 
ecosystem development. 

4.2 Distinguishing Incident Types 

Different types of AI incidents require different response approaches. Understanding these 
distinctions clarifies which stakeholders should lead response efforts and how organizational 
functions should coordinate. Three primary distinctions shape incident response 
implementation. 

 

 



4.2.1 Bad Actors vs. Security Threats vs. Unintentional Harm 

Table 10: High-level summary of some common incident types 

Common Incident Types 

Incident Type Characteristics Response Focus Examples 

Bad Actors Intentional exploitation Security, forensics, law 
enforcement 

Prompt injection, data 
poisoning 

Security Threats Vulnerabilities (may not 
be exploited) 

Containment, patching, 
hardening 

Model inversion, 
adversarial attacks 

Unintentional Harm No malicious actors System improvement, 
testing expansion 

Harmful advice, 
performance degradation 

 

Bad actors intentionally exploit system vulnerabilities or manipulate AI systems for malicious 
purposes. These incidents require security-focused incident response, forensic investigation 
capabilities, and potential law enforcement coordination. Response focuses on containment of 
the threat, evidence preservation for investigation, and attribution where possible. Examples 
include prompt injection attacks designed to bypass guardrails, data poisoning campaigns 
targeting training processes, coordinated jailbreaking efforts to extract harmful content, and 
deliberate manipulation of AI systems for fraud or abuse. 

Security threats involve system vulnerabilities that could be exploited, whether or not active 
exploitation has occurred. These incidents require rapid containment, security-focused root 
cause analysis, and coordination between security teams and AI system owners. Response 
focuses on patch development, system hardening to prevent exploitation, and vulnerability 
disclosure procedures that balance transparency with security. Examples include model inversion 
vulnerabilities that could leak training data, adversarial attack susceptibilities that could 
compromise decision integrity, authentication bypass possibilities, and data exfiltration risks from 
deployed systems. 

Incidents from unintentional harm and failures occur without malicious actors or deliberate 
exploitation. These incidents require system improvement, expanded testing coverage, and 
refinement of operational procedures. Response focuses on understanding the failure 
mechanism, improving system reliability, and preventing recurrence through better design, 
testing, or deployment practices. Examples include harmful advice, performance degradation in 
production environments, unexpected behaviors in edge cases the system was not designed to 
handle, and failures arising from component interactions in complex workflows. 

 

 



 

 
Security and Safety Can Overlap 
 
Many real-world incidents involve both security and safety dimensions simultaneously. A 
compromised account used to generate harmful content creates both a security incident 
(unauthorized access) and a safety incident (harmful output). A model vulnerability that 
enables training data extraction affects both security (exploitable weakness) and safety (privacy 
violation and information disclosure). This overlap requires coordinated response across 
organizational functions that traditionally operate separately, with distinct expertise and 
procedures. 

 

4.2.2 Trusted vs. Untrusted Users 

An additional operational distinction shapes incident response implementation: whether 
incidents involve trusted or untrusted users. AI systems deployed for employees or verified 
customers face different threat models than systems deployed for the general public. 
Organizations design systems with different security controls, monitoring thresholds, and 
response procedures depending on who uses them. The same technical failure may warrant 
different responses depending on whether it occurred with trusted users in normal operation or 
untrusted users attempting exploitation. Detection approaches, investigation procedures, and 
response strategies should account for these different threat environments. 

Trusted users include authenticated employees, verified customers, authorized partners, and 
other actors operating within environments designed for cooperative use. Systems deployed for 
trusted users make different security tradeoffs, typically prioritizing usability and functionality 
over restrictive controls. Organizations know the identity of trusted users and can apply 
consequences for misuse through employment relationships, customer agreements, or 
partnership contracts. 

Detection approaches for incidents involving trusted users often rely on anomaly detection 
based on known usage patterns. Organizations track normal behavior for authenticated users and 
flag deviations. Investigation can directly contact users to understand context. Response may 
involve retraining, clearer guidance, or interface improvements rather than assuming malicious 
intent. 

Untrusted users include external actors, unauthenticated users, insider threats, and potential 
adversaries without established relationships to the deploying organization. These users may 
include attackers actively trying to exploit vulnerabilities, competitors seeking to understand 
system capabilities, or researchers testing system boundaries. Systems deployed in environments 
with untrusted users require more restrictive controls, stricter monitoring, activity analysis for 
known bad-actor behaviors, and additional focus on security. 

Detection approaches assume potential malicious intent, using stricter thresholds for anomalous 
behavior and monitoring for known attack patterns. Investigation cannot rely on user 
cooperation. Response should assume ongoing adversarial activity and design mitigations that 
function even against determined attackers. 

 



 

 
The Blurry Boundary 

The distinction between trusted and untrusted users becomes complicated when bad 
actors compromise legitimate accounts. Malicious activity appears to originate from trusted 
sources with valid authentication. This creates situations analogous to "money mules" in 
financial crime, where legitimate accounts serve illegitimate purposes. Organizations should 
implement behavioral analysis even for authenticated users, recognizing that credentials alone 
do not guarantee trustworthy intent. 

Compromised accounts create complex detection challenges. Simple authentication checks 
pass normally. Unusual behavior may reflect legitimate changes in usage patterns rather than 
compromise. Examination should balance security concerns with user privacy and relationship 
maintenance. Response procedures should distinguish between users acting maliciously, users 
whose accounts have been compromised without their knowledge, and users making honest 
mistakes. 

 

4.3 Key Stakeholders and Their Roles 

 

The six-stakeholder ecosystem enables AI incident response capabilities beyond what individual 
organizations can achieve alone. Organizations can implement the seven-step framework 
independently and respond effectively to incidents affecting their systems. However, ecosystem 
coordination multiplies these benefits through pattern identification across organizations, shared 
learning about failure modes, and field-wide reliability improvement. This coordinated structure 
does not yet exist in mature form and requires deliberate development. 

Table 11 provides a comprehensive reference showing what each stakeholder can contribute at 
each step of the incident response process. This table helps organizations to quickly identify 
which stakeholders to engage for different types of incidents and understand natural 
coordination points where multiple stakeholders should work together. 

 



 

Figure 5: The AI Incident Response Ecosystem showing stakeholder coordination across the 
seven-step response process.  

 



Table 11: Stakeholder capabilities across the seven-step incident response process. 
Coordination between stakeholders enables a comprehensive response that is impossible 
for any single entity. 

 
Stakeholder Capabilities at Each Step in the Incident Response Process 

Stakeholder 1. Detect 2. Assess 3. Stabilize 4. Report 5. Investigate 6. Correct 7. Verify 

Developers 

Internal 
testing, 
continuous 
monitoring, 
security 
research 

Technical 
severity, 
exploitability, 
cross-deploy
ment impact 

Rollback 
versions, 
emergency 
patches, kill 
switches 

Technical 
specifications, 
root causes, 
corrective 
actions 

Deep 
technical root 
cause analysis 
of model 
internals 

Retrain 
models, 
redesign 
architectures, 
implement 
guardrails 

Technical 
validation 
across diverse 
scenarios 

Deployers 

User 
feedback, 
operational 
monitoring, 
compliance 
audits 

Business 
impact, 
regulatory 
requirements, 
affected 
populations 

Manual 
processes, 
restrict 
access, 
additional 
oversight 

Operational 
impacts, 
business 
consequences, 
notifications 

System-level 
analysis, 
human factors, 
operational 
context 

Harm 
mitigation, 
configuration 
adjustments, 
procedure 
updates 

Operational 
effectiveness, 
user feedback, 
business 
metrics 

Users 

Direct 
experience 
with failures, 
reporting 
through 
channels 

--- --- --- 
Provide 
context during 
investigations 

--- 

Validate 
corrections to 
address 
experienced 
harms 

Government 
& Oversight 
Bodies 

Cross-organiz
ational 
pattern 
recognition 

Sector-wide 
impact, 
regulatory 
priority 

Emergency 
regulatory 
action (rare, 
systemic 
only) 

Public reports 
on trends and 
systemic 
issues 

Cross-organiz
ational root 
causes, 
systemic 
factors 

Policy 
changes, 
regulatory 
requirements, 
enforcement 

Compliance 
monitoring, 
policy 
effectiveness 
assessment 

Independent 
Third 
Parties 

Aggregate 
public 
reports, 
voluntary 
disclosures 

Classify using 
consistent 
taxonomies 

--- 

Maintain 
public 
databases, 
publish 
analyses 

Cross-organiz
ational pattern 
research 

--- --- 

Assurance & 
Audit Orgs, 

Discover 
unreported 
incidents 
through 
audits 

Verify severity 
classifications --- 

Audit 
documentatio
n 
completeness 

Independent 
review of root 
cause analyses 

Confirm 
implementati
on 

Core 
function: 
Independent 
validation of 
effectiveness 

 



3.1 AI Developers 

AI developers include organizations and teams that create AI models and systems across all 
applications. This includes foundation model creators, developers building traditional machine 
learning models for classification and prediction, computer vision system developers, 
recommendation system developers, and specialists in reinforcement learning and other AI 
approaches. System integrators assemble AI components into complete solutions. All share deep 
technical involvement in creating AI systems, whether building from scratch or adapting existing 
models. 

●​ Unique capabilities 
o​ Deep understanding of system internals including model architectures, training 

processes, and implementation details. Access to training data, model weights, 
and system implementation code 

o​ Ability to perform technical interventions including model retraining, fine-tuning 
for specific contexts, architectural modifications, and implementation of technical 
guardrails 

o​ Technical expertise enabling component-level and model-level root cause analysis 
●​ What they typically cannot do 

o​ Directly observe deployment contexts showing how users actually employ 
systems in practice 

o​ Access visibility into actual usage patterns in production environments 
o​ Understand operational environment factors contributing to incidents without 

deployer collaboration 
o​ Directly mitigate harm to end users without working through deployer 

relationships 
o​ See system-level and system-of-systems interactions that occur during 

deployment 

Activities Across the Seven-Step Loop 
Developers participate in all seven steps of the incident response process, with particular 
strength in technical analysis and model-level corrections. Their involvement focuses on 
component-level and model-level issues, detecting problems through internal testing and 
continuous monitoring, then investigating root causes through deep technical analysis of training 
data, model architectures, and system interactions. Corrections typically involve model retraining, 
architectural modifications, or implementation of technical guardrails. Technical validation across 
diverse scenarios ensures that fixes address root causes without introducing new failure modes. 
This technical focus complements deployers' operational expertise, creating natural coordination 
points throughout the response process where model-level insights must integrate with 
deployment context understanding. 

Developer-Deployer Coordination is Essential 
Developers need deployer insight into operational incidents that reveal failure modes invisible in 
developmental testing. Deployers need developer expertise for technical corrections addressing 
root causes. This natural interdependency creates a coordination requirement. Many incidents 
require both operational adjustments (deployer responsibility) and technical corrections 
(developer responsibility) for effective resolution. 

 

 



4.3.2 Deployers (Organizations Using AI Systems) 

AI deployers include enterprises deploying AI for business operations, healthcare organizations 
using diagnostic AI systems, financial institutions using AI for risk assessment and fraud 
detection, government agencies using AI for public services, educational institutions using AI for 
student support, and any organization integrating AI into operational processes. Deployers 
configure, customize, and integrate AI systems for specific use cases. 

●​ Unique capabilities 
o​ Understanding of operational context including how AI integrates with existing 

systems, processes, and workflows 
o​ Knowledge of who uses systems and for what purposes, what operational 

constraints apply, and what consequences incidents create 
o​ Authority over operational procedures, system configurations, and deployment 

choices 
o​ Visibility into real-world consequences of AI decisions and behaviors 
o​ Ability to observe system-level and system-of-systems interactions that occur in 

production 
●​ What they typically cannot do 

o​ Perform deep technical debugging of model internals without developer support 
o​ Access training data, training processes, and technical documentation necessary 

for component-level root cause analysis 
o​ Retrain models, modify model architectures, or implement certain technical 

guardrails requiring changes to model behavior rather than deployment 
configuration 

o​ See how design decisions made during model development affect system 
behavior in ways requiring architectural changes 

o​ Distinguish whether an incident requires model-level correction or 
deployment-level adjustment without developer collaboration  

 
Activities Across the Seven-Step Loop 
Deployers engage across all seven steps with a focus on operational response and business 
impact mitigation. Their proximity to users enables rapid detection through feedback channels 
and operational monitoring, while their authority over system configurations allows immediate 
stabilization through manual processes, access restrictions, or additional oversight. Assessment 
activities evaluate business impact, regulatory requirements, and affected population 
characteristics. System-level investigation analyzes how failures propagate through workflows, 
examines human factors and operational context, and identifies patterns across multiple 
incidents in their environment. Corrections address both system improvements and harm 
mitigation for affected users, while verification confirms operational effectiveness through user 
feedback and business metrics. This operational focus complements developers' technical 
expertise, with coordination essential for distinguishing deployment-level issues from model-level 
problems requiring architectural changes. 

Configuration and Customization 
Many deployers fine-tune models for specific use cases, configure systems for operational 
environments, customize applications for business needs, and integrate AI with existing systems. 
These activities make deployers partially responsible for system behavior. Distinguishing 
developer responsibilities from deployer responsibilities requires understanding what was 
configured during deployment versus what is inherent in the model. 

 



Multiple Deployers Per Developer 
One developer's foundation model may serve thousands of deployers, each with different 
operational contexts, use cases, user populations, and performance requirements. The same 
model may work well for some deployers while failing for others due to differences in 
deployment context. This creates coordination challenges at scale. Developers cannot customize 
for every deployer. Deployers should configure appropriately for their contexts. 

4.3.3 Users 

Users encompass anyone who interacts with or is affected by AI systems, whether external or 
internal to the deploying organization. External users include customers, service recipients, and 
members of the general public affected by AI decisions. Internal users include employees using 
enterprise AI for business operations, decision support, data analysis, or other organizational 
functions. Both groups experience AI system performance in authentic operational contexts and 
provide essential feedback about real-world behavior, though their relationships to the deploying 
organization and available reporting channels may differ significantly. 

●​ Unique capabilities 
o​ Direct experience with system failures, unexpected behaviors, harmful outputs, or 

discriminatory decisions 
o​ Ability to report through feedback mechanisms, help desks, complaint processes, 

or regulatory channels 
o​ Real-world context about how AI systems perform in authentic operational 

environments 
o​ Diverse perspectives reflecting different populations, use cases, and operational 

environments  
●​ What they typically cannot do 

o​ Participate in Assess, Stabilize, Report, or Correct steps requiring organizational 
authority, technical expertise, or access to system internals 

Activities Across the Seven-Step Loop 
Users contribute primarily through detection, investigation context, and validation of corrections. 
While they do not perform technical response activities, they have direct experience with the 
impact of AI incidents. Users typically do not participate in Assess, Stabilize, Report, or Correct 
steps, as these require organizational authority, technical expertise, or access to system internals 
that users do not possess. However, their contributions to Detect, Investigate, and Verify steps 
are essential for effective incident response. 

Challenges 
Users may not recognize when AI is involved in decisions, limiting their ability to report 
AI-related issues. They may lack the technical knowledge needed to describe problems 
effectively. Barriers to reporting include unclear channels, time requirements, and concerns about 
consequences. Available recourse when harmed by AI systems often remains unknown to 
affected individuals. 

Despite these challenges, users provide irreplaceable detection signals and validation that 
corrections work in practice. Effective incident response depends on treating users as essential 
stakeholders whose experiences and feedback drive improvement. 

 

 



4.3.4 Government and Oversight Bodies 

Government and oversight bodies include regulatory agencies with authority over specific 
sectors, consumer protection agencies, civil rights enforcement bodies, data protection 
authorities, and sector-specific regulators across different jurisdictions. Additionally, they occupy 
a position no other stakeholder can fill: cross-organizational visibility combined with 
enforcement authority. This combination enables pattern recognition at scale while providing 
mechanisms to drive systemic change. 

●​ Unique capabilities 
o​ Authority to set requirements and enforce compliance through regulatory action 
o​ Ability to mandate incident reporting across many organizations, enabling access 

to incident data at scale 
o​ Capacity to conduct cross-organizational pattern analysis revealing systemic 

issues 
o​ Authority to take regulatory action directing specific entities to correct problems 

●​ What they typically cannot do 
o​ Stabilize individual operational incidents 
o​ Access technical details necessary for deep component-level analysis without 

requiring disclosure 
o​ Implement corrections directly (may direct regulated entities to take action) 
o​ Verify technical correction effectiveness without independent evaluation 

capabilities 

Activities Across the Seven-Step Loop 
Government and oversight bodies operate at a different level than individual organizations. 
While they may respond to egregious individual AI incidents, they more typically run their AI 
incident response process on aggregated incident patterns identified across multiple 
organizations. Their activities fall into three complementary areas: aggregating and analyzing 
incident data, setting requirements for organizational response, and responding through policy 
and enforcement. 

●​ Aggregating and Analyzing: Oversight bodies could collect incident data across 
organizations within their jurisdiction. They can identify cross-organizational patterns 
revealing systemic issues, detect sector-wide trends requiring policy attention, track 
industry-wide metrics, and analyze the effectiveness of regulatory requirements. 

●​ Setting Requirements: Oversight bodies could recommend or mandate specific 
incident response processes appropriate to sector risks. They can require reporting of 
certain incident types meeting defined thresholds, set AI standards that AI systems must 
meet, and provide compliance guidance. 

●​ Responding Through Policy and Enforcement: Oversight bodies could develop 
policy based on AI incident patterns seen across organizations. They could take 
regulatory action directed at specific entities violating requirements, issue strategic 
guidance for sectors based on lessons learned, publicly report on incident trends, and 
coordinate with other jurisdictions on shared challenges. 

Current State of Government Involvement 
Government involvement in systematic AI incident response remains limited globally. Most 
regulatory activity occurs through enforcement actions rather than systematic incident collection 
and analysis. The infrastructure for cross-organizational pattern recognition by 

 



government bodies largely does not yet exist. This is beginning to change as new regulatory 
frameworks take effect. However, even with new regulatory frameworks, institutions may not 
have the infrastructure to perform cross-organizational pattern recognition or participate in the 
AI incident response loop in a manner that mitigates future incidents or improves AI reliability. 

The European Union's AI Act, which enters into force in stages through 202762, represents the 
most developed government incident reporting system globally. Starting in August 2026,63 
national market surveillance authorities in EU member states will receive reports of serious 
incidents from providers of high-risk AI systems. These reports should be submitted within 2 to 
15 days depending on incident severity. Serious incidents include those causing death or serious 
health harm, serious and irreversible disruption to critical infrastructure, infringements of 
fundamental rights protections, or serious harm to property or the environment. This system will 
provide the first large-scale example of government bodies systematically receiving and analyzing 
AI incident data across organizations and sectors. 

In other jurisdictions, regulatory agencies respond to AI incidents primarily through case-by-case 
enforcement rather than systematic collection. Consumer protection authorities use existing 
statutory powers to take action against companies whose AI systems harm consumers through 
deceptive practices, unfair treatment, or discriminatory outcomes. Civil rights enforcement 
bodies apply anti-discrimination laws when AI systems used in employment, housing, or other 
consequential decisions create discriminatory effects. Financial regulators address AI-related 
issues in their sectors, and healthcare regulators oversee AI in medical applications. However, 
these enforcement activities generally occur reactively in response to complaints rather than 
proactively based on pattern analysis across systematically collected incident data. 

Some jurisdictions have introduced targeted legislative64 requirements for specific AI 
applications. Requirements for algorithmic impact assessments, bias audits for hiring tools, and 
transparency obligations for automated decision-making systems create compliance frameworks 
that regulators can enforce. These requirements often include documentation and reporting 
obligations that could support more systematic incident tracking, though comprehensive incident 
reporting infrastructure remains underdeveloped outside the EU framework.65 

Dependency on Standardized Reporting 
Effective oversight depends on access to incident data collected in forms enabling pattern 
recognition and trend analysis. Standardized incident reporting structures facilitate this function. 
Without structured, analyzable data, oversight bodies cannot detect patterns, cannot identify 
systemic issues requiring attention, and cannot develop evidence-based policy. The design of 
reporting requirements profoundly affects oversight effectiveness. 

65 EU AI Act Article 73 on serious incident reporting, https://artificialintelligenceact.eu/article/73/ 

64 States Ring in the New Year with Proposed AI Legislation by: Adam S. Forman, Greta Ravitsky, Elizabeth S. 
Torkelsen, Jennifer Stefanick Barna Epstein Becker & Green, P.C. - Workforce Bulletin Tuesday, January 21, 2025 
https://natlawreview.com/article/states-ring-new-year-proposed-ai-legislation  

63 IAPP Timeline Resource: High-risk AI incident reporting by August 2, 2025 [refers to preparatory obligations]; 
practical implementation of high-risk AI requirements by February 2, 2026; entry into application August 2, 2026, 
https://iapp.org/resources/article/eu-ai-act-timeline/  

62 European Commission Draft Guidance (September 26, 2025): Article 73  
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4.3.5 Independent Third-Party Organizations 

Independent third-party organizations operate outside both government and industry 
structures to support the AI incident response ecosystem.66 These include incident collection and 
monitoring organizations such as the AI Incident Database (AIID)67 68 and the OECD AI 
Incidents and Hazards Monitor (AIM),69 specialized databases tracking specific incident types 
including deepfake incidents and legal AI issues, academic research groups analyzing AI failures 
and incident patterns, professional organizations such as IEEE that convene practitioners and 
develop guidance, and standards development organizations such as ETSI and the OECD that 
create technical standards and reporting frameworks for AI systems.  

●​ Unique capabilities 
o​ Operation outside both government and industry structures, enabling flexibility 

and freedom from direct conflicts of interest 
o​ Ability to move quickly, where government agencies may face bureaucratic 

constraints 
o​ Capacity to maintain transparency where companies face competitive pressures 

limiting disclosure 
o​ Ability to aggregate data across organizations, sectors, and geographies, enabling 

pattern recognition at scale 
o​ Provide public resources, including databases, research findings, and standards 

that benefit the entire field  
●​ What they typically cannot do 

o​ Perform stabilization, correction, or verification steps  
o​ Access proprietary technical details necessary for deep analysis without voluntary 

disclosure 
o​ Compel incident reporting from organizations 
o​ Directly enforce corrections or verify that organizations implement effective 

responses 

Activities Across the Seven-Step Loop 
Independent organizations typically do not perform stabilization, correction, or verification steps 
because they are not in operational roles with authority over deployed systems. Their 
contributions focus on transparency, pattern recognition, and standards development rather than 
operational response. They perform three complementary functions that support the broader 
ecosystem. 

First, they collect and aggregate incident information from diverse sources. The OECD’s AIM 
tracks incidents in real time through automated analysis of over news sources worldwide. The 
OECD Expert Group on AI Incidents has developed standardized definitions for AI incidents 

69 OECD collects incidents through its AI Incident Monitor (AIM), https://oecd.ai/en/incidents-methodology 

68 McGregor, S. (2021). "Preventing Repeated Real World AI Failures by Cataloging Incidents: The AI Incident 
Database." Proceedings of the AAAI Conference on Artificial Intelligence, 35(17), 15458-15463. 

67 The AI Incident Database (AIID), operated as an independent third-party initiative, serves as a pioneering model 
for cross-organizational incident collection. By establishing the first comprehensive repository of AI incidents from 
diverse sources, AIID demonstrates the feasibility of aggregated incident tracking while maintaining contributor 
confidentiality. Its operational precedent addresses the collective action problem inherent in incident sharing: 
organizations hesitate to report in isolation, but AIID's existing infrastructure and dataset lower barriers to 
participation and enable pattern recognition that no single organization can achieve alone. AIID’s work has 
influence the OECD’s work on defining AI incidents See https://incidentdatabase.ai.  

66 Note that this role differs from trusted intermediaries that handle sensitive proprietary data under protected 
sharing agreements.  
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and related terminology to foster international interoperability. Other databases such as the AI 
Incident Database and sector-specific repositories document incidents from news media, 
research papers, voluntary organizational submissions, and public disclosures. These databases 
enable cross-organizational pattern analysis without requiring regulatory authority. 

Second, standards development organizations convene stakeholders to create technical 
frameworks. The OECD is developing a common reporting framework for AI incidents to 
enable consistent and interoperable reporting globally.70 ETSI conducts working groups 
developing technical standards for AI systems. Professional organizations create guidance 
documents and facilitate information sharing among practitioners. 

Third, researchers analyze aggregated incident patterns, develop taxonomies and classification 
schemes, and publish findings that inform policy discussions with empirical evidence. Together, 
these activities help identify emerging trends, new incident types, and systemic issues while 
building the knowledge base needed for effective AI governance. 

Limitations 
Independent organizations rely on publicly available information, voluntary submissions, or 
volunteer participation, limiting their access and involvement in incident response. They may lack 
access to proprietary technical details necessary for deep analysis. They cannot compel incident 
reporting from organizations. They cannot directly enforce corrections or verify that 
organizations implement effective responses. Additionally, while they can document and 
investigate AI incidents, they are typically not reporting new incidents. 

Despite these limitations, independent third parties play crucial roles in aggregate analysis, 
transparency, research advancing the field, and standards development based on lessons learned. 

Future Potential: ISACs for AI 
Information Sharing and Analysis Centers (ISACs) operate successfully in sectors facing 
analogous challenges: financial services (FS-ISAC),71 healthcare (H-ISAC),72 aviation (A-ISAC),73 
automotive (Auto-ISAC),74 and energy (E-ISAC).75 These member-based professional 
organizations actively collect, analyze, and share incident data among members while protecting 
proprietary information and competitive sensitivities. 

ISACs provide trusted venues where member organizations can report incidents confidentially, 
often anonymously. Pattern recognition occurs across member data without requiring public 
disclosure of individual incidents. Members receive real-time threat intelligence based on patterns 
detected across the membership, enabling collective defense while protecting competitive 
information. This model solves a critical challenge: organizations gain the benefits of shared 
intelligence without the risks of public disclosure. 

Similar structures could develop in the AI sector, complementing existing independent collectors 
like the AI Incident Database and OECD's AI Incidents and Hazards Monitor. AI-focused 

75 https://www.eisac.com/s/ 
74 https://automotiveisac.com/ 
73 https://www.a-isac.com/ 
72 https://health-isac.org/ 
71 https://www.fsisac.com/ 
70 https://oecd.ai/en/site/incidents  
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ISAC76-like centers could provide member-only incident sharing with more complete technical 
details than public databases allow, aggregated public analysis that informs the broader 
ecosystem without exposing individual organizations, real-time alerts about emerging threats 
based on member reports, and sector-specific coordination tailored to particular AI applications 
or industries. This approach would build on the proven financial services model while addressing 
AI-specific coordination needs. 

4.3.6 Assurance Organizations and Auditors 

Assurance organizations and auditors include internal audit teams77 within organizations 
deploying AI, external auditing firms providing independent verification, specialized third-party 
assurance providers focusing on AI systems, AI audit specialists with technical expertise, and 
compliance verification organizations validating regulatory adherence.78 

Assurance organizations do not respond to incidents directly but provide independent 
verification that strengthens the reliability of incident response across the ecosystem. Their audits 
serve multiple audiences: they give developers and deployers confidence that their processes 
function as intended, provide regulators with verified evidence for compliance and enforcement 
decisions, and offer stakeholders credible assurance that incident disclosures are trustworthy. By 
validating both preparedness infrastructure before incidents occur and response effectiveness 
after incidents are resolved, assurance functions create accountability mechanisms that bridge 
operational entities and oversight bodies. As AI assurance evolves toward fiduciary accountability 
under proposals like O'Reilly and Strauss's framework (discussed below), this verification role 
becomes integral to corporate governance rather than an optional technical review 

●​ Unique capabilities 
o​ Independent verification and validation separate from operational responsibilities 
o​ Audit expertise and methodologies proven in other domains 
o​ Objectivity through professional standards and independence requirements 
o​ Credibility with regulators and stakeholders through established reputations 
o​ Expertise in evidence gathering, assessment procedures, and verification 

approaches  
●​ What they typically cannot do 

o​ Perform stabilization (not in operational roles) 
o​ Access systems and data without organizational cooperation 
o​ Compel corrective actions (can only recommend and verify) 
o​ Conduct real-time monitoring (typically perform point-in-time audits) 

Activities Across the Seven-Step Loop 
Assurance organizations operate selectively across the incident response process, concentrating 
where independent verification adds value. Through scheduled audits, they may discover 
unreported incidents and validate that severity classifications follow documented frameworks. 
Documentation reviews assess completeness and accuracy of incident reports, while independent 
analysis examines whether root cause investigations employed rigorous methodologies. 

78 Lam, M.K., et al. (2024). "A Framework for Assurance Audits of Algorithmic Systems." Proceedings of the 2024 
ACM Conference on Fairness, Accountability, and Transparency (FAccT '24), 1124-1137. 

77 Raji, I.D., et al. (2020). "Closing the AI Accountability Gap: Defining an End-to-End Framework for Internal 
Algorithmic Auditing." Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, 33-44. 

76 U.S. Department of Homeland Security. (2015). "Information Sharing and Analysis Centers: Best Practices 
Guide." DHS National Protection and Programs Directorate. 

 



Confirmation that documented corrective actions were actually implemented in operational 
systems represents a critical checkpoint, though the primary assurance function centers on 
verification. Independent validation of correction effectiveness provides third-party confirmation 
that reliability improvements are accurately measured and reported. Notably, assurance 
organizations do not perform stabilization, as this requires operational authority they do not 
possess. Their role remains focused on verification rather than execution, creating accountability 
bridges between operational entities and oversight bodies. 

Critical Role 
As AI systems become embedded in regulated and high-stakes contexts, assurance functions 
provide verification that: 

●​ Incident disclosures are complete and accurate 
●​ Model behaviors meet established standards 
●​ Mitigation measures are effective 
●​ Incident response processes function as documented 
●​ Organizations meet reliability, safety, and fairness standards 

The role of AI assurance is expanding beyond technical verification. Tim O'Reilly and Ilan 
Strauss79 80 propose that AI systems, including their incidents, dependencies, and risks, should be 
disclosed as part of company financial and operational reporting. This perspective reframes AI 
assurance not merely as a technical or ethical responsibility but as a matter of fiduciary 
accountability. If AI systems contribute to productivity, liability, or reputational risk, their 
performance and incidents should be subject to the same verification, audit, and disclosure 
standards as other material business operations. 

Integrating AI incident data into financial reporting would align incentives across regulators, 
auditors, and boards. AI reliability and transparency would become components of corporate 
governance rather than after-the-fact remediation. Assurance organizations would provide the 
verification function necessary for boards and shareholders to rely on AI-related disclosures. 

Relationship to Other Stakeholders 
Typically, assurance organizations and auditors do not have their own independent response loop 
processes. Instead, they support AI incident response for other entities. 

●​ With Developers and Deployers: Assurance organizations audit incident response 
processes and capabilities, validate accuracy of incident reports, verify effectiveness of 
corrections, and provide attestation for compliance with requirements. 

●​ With Government and Oversight: Assurance organizations provide independent 
verification for regulatory compliance, supply evidence for enforcement actions, support 
policy development with audited data, and enable oversight bodies to rely on verified 
information rather than unaudited organizational claims. 

80 Strauss, Ilan, O’Reilly, Tim, Rosenblat, Sruly, and Isobel Moure. “Governing AI Through SEC Disclosure.” 
Working Paper. Social Science Research Council, October 2025. 
https://www.ssrc.org/publications/governing-ai-through-sec-disclosure-materiality-standards-and-incident-reportin
glessons-from-cybersecurity/ 

79 Ilan Strauss, Isobel Moure, Tim O’Reilly and Sruly Rosenblat. “Real-World Gaps in AI Governance Research: AI 
Safety and Reliability in Everyday Deployments.” SSRC AI Disclosures Project Working Paper Series (SSRC AI WP 
2025-04), Social Science Research Council, April 2025. 
https://www.ssrc.org/publications/real-world-gaps-in-ai-governance-research/    
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●​ With Independent Third Parties: Assurance organizations may use aggregated 
incident data for benchmarking and validation, contribute to standards development 
based on audit experience, and inform best practices with findings from verification 
activities. 

Additionally, assurance organizations can help organizations develop severity frameworks before 
incidents occur, assist with developing investigation capabilities, verify preparedness 
infrastructure before systems are deployed, and conduct readiness assessments identifying gaps 
in incident response capabilities. 

The addition of assurance and audit functions to the AI incident response ecosystem reflects the 
maturing recognition that AI systems require the same governance, verification, and 
accountability structures as other critical business operations. 

4.3.7 Ecosystem Coordination 

Figure 5 illustrates how stakeholders interact within the incident response ecosystem. The 
diagram shows which entities can perform each step of the seven-step process, the information 
flows between stakeholders, and the distinct loops that characterize operational response 
(developers and deployers), oversight activities (assurance organizations and government bodies), 
and ecosystem learning (independent third parties aggregating and analyzing patterns). 

As described in Section 4.1, coordinated ecosystem action unlocks capabilities impossible for 
individual organizations: pattern recognition revealing systemic issues, shared learning 
accelerating field-wide reliability improvement, and standardized reporting enabling both 
computational analysis and regulatory oversight. Independent verification provides credibility for 
incident disclosures. Together, these coordination mechanisms transform incident response from 
reactive firefighting within organizations into proactive, systematic reliability improvement across 
the entire AI ecosystem. 

 

 



Section 5. Building the Ecosystem: Recommendations for Action 

This framework and the discussed ecosystem require coordinated action across multiple 
stakeholders. Organizations deploying or developing AI systems should begin implementing 
systematic incident response processes. Assurance organizations should develop verification 
capabilities for AI-specific risks. Standards bodies, regulators, and professional organizations 
should build the infrastructure enabling ecosystem-wide learning. While individual organizations 
can implement incident response independently, the full benefits (pattern identification, shared 
learning, and field-wide reliability improvement) depend on ecosystem-level coordination. 

5.1 For AI Deployers 

Organizations deploying AI systems are primarily responsible for operational incident response 
and mitigating user harm. Deployers should build incident response capabilities proactively, 
before incidents occur, rather than developing processes during active crises. 

Immediate Priorities 
Deployers should focus initial efforts on three foundational capabilities: 

●​ Detection infrastructure: Implement monitoring of AI system outputs and 
performance metrics, create accessible user feedback channels, and designate personnel 
responsible for receiving and triaging incident reports 

●​ Severity assessment frameworks: Adapt established severity classification systems such 
as MIL-STD-882E to operational context, document escalation criteria accounting for 
AI-specific factors like hallucinations and accumulated harm, and train personnel on 
applying assessment criteria consistently 

●​ Incident documentation: Create standardized incident report templates, establish 
secure storage for incident records, and define notification procedures for internal 
stakeholders and external parties 

Integration with Existing Processes 
Deployers with mature IT or security incident response should extend existing capabilities rather 
than building parallel systems: 

●​ Adapt severity criteria to include AI-specific harms such as hallucinations, quality 
degradation, and privacy violations 

●​ Augment root cause analysis methodologies to account for non-deterministic behavior 
and context-dependent failures 

●​ Modify verification processes to assess distributional shifts rather than deterministic 
pass/fail testing 

●​ Bridge organizational divides between security teams, engineering teams, and operational 
units 

Preparedness Infrastructure 
Beyond reactive response, deployers should invest in preparedness: 

●​ Document likely failure modes before deployment and develop stabilization procedures 
for each 

●​ Establish multidisciplinary investigation teams including data science, domain expertise, 
operational knowledge, and human factors specialists 

 



●​ Create backup systems or manual processes enabling rapid failover during incidents 
●​ Develop harm notification and remediation procedures for affected users 
●​ Track reliability metrics demonstrating system improvement over time 

Ecosystem Participation 
Deployers should contribute to collective learning while protecting competitive interests: 

●​ Participate in sector-specific information sharing arrangements when available 
●​ Consider voluntary incident reporting to independent databases supporting research and 

standards development 
●​ Engage with standards bodies developing incident reporting frameworks 
●​ Share lessons learned through professional organizations while protecting proprietary 

details 

5.2 For AI Developers 

AI developers possess unique technical capabilities essential for understanding and correcting 
model-level failures. However, developers typically lack visibility into how systems perform in 
operational contexts, creating natural dependencies with deployers. 

Technical Response Capabilities 
Developers should build infrastructure enabling rapid technical response: 

●​ Model monitoring and rollback: Maintain version control for models and ability to 
rapidly roll back to previous versions, implement automated monitoring for model 
behavior changes, and create emergency patch processes 

●​ Root cause analysis for models: Develop methodologies for investigating 
non-reproducible failures, build tools for analyzing training data contributions to failures, 
and create processes for identifying architectural vulnerabilities 

●​ Testing and validation: Establish staging environments for testing corrections before 
deployment, implement A/B testing capabilities for comparing corrected versus original 
models, and develop metrics for assessing distributional shifts in model behavior 

Coordination with Deployers 

Effective incident response requires information flow between developers and deployers: 

●​ Create channels for deployers to report operational incidents with sufficient technical 
detail 

●​ Provide deployers with documentation about known limitations and failure modes 
●​ Establish service level agreements for technical support during incidents 
●​ Share information about model updates and their potential operational impacts 

Vulnerability Disclosure 
Developers should implement coordinated disclosure processes for security vulnerabilities: 

●​ Create clear channels for security researchers to report vulnerabilities 
●​ Establish timelines for developing and distributing patches 
●​ Coordinate with affected deployers before public disclosure 
●​ Document lessons learned for improving future model development 

 



Proactive Reliability Investment 
Beyond reactive incident response, developers should invest in reducing incident frequency: 

●​ Conduct regular output quality audits across different input types and use cases 
●​ Test for robustness against adversarial inputs and edge cases 
●​ Implement guardrails limiting harmful outputs 
●​ Monitor deployed systems for performance degradation 
●​ Incorporate lessons from reported incidents into development processes 

5.3 For Assurance and Audit Organizations 

As AI systems become embedded in regulated and high-stakes contexts, assurance functions 
provide independent verification that incident response processes function effectively and 
produce trustworthy outputs. This represents an emerging market opportunity as regulatory 
requirements and corporate governance expectations expand. 

Core Verification Capabilities 
Assurance organizations should develop expertise in auditing AI incident response: 

●​ Preparedness assessment: Verify that severity frameworks are appropriate for 
operational contexts, confirm investigation teams possess necessary expertise, validate 
that stabilization procedures are tested and documented, and assess whether monitoring 
infrastructure can detect relevant failures 

●​ Process audit: Confirm organizations follow documented incident response procedures, 
verify incident reports are complete and accurate, review root cause analyses for 
methodological rigor, and validate that corrective actions were actually implemented 

●​ Effectiveness verification: Independently test whether corrections achieved intended 
effects, confirm reliability metrics accurately reflect system improvements, and provide 
third-party validation for stakeholders and regulators 

Integration with Corporate Governance 
Following proposals by O'Reilly and Strauss, AI assurance should evolving from optional 
technical review toward fiduciary accountability: 

●​ AI systems and their incidents should be disclosed in company financial and operational 
reporting when they contribute to productivity, liability, or reputational risk 

●​ Boards and executives require independent verification of AI system reliability and 
incident response effectiveness 

●​ Audit firms should develop AI assurance practices comparable to financial audit 
capabilities 

●​ Internal audit functions should expand scope to include AI risk management and 
incident response 

Developing Audit Programs 
Assurance organizations should create structured audit programs covering: 

●​ Adequacy of incident detection mechanisms, including both automated monitoring and 
user feedback channels 

●​ Appropriateness of severity classification frameworks for the operational environment 
●​ Completeness and accuracy of incident documentation 

 



●​ Rigor of root cause investigation methodologies 
●​ Implementation of documented corrective actions 
●​ Effectiveness of verification testing and ongoing monitoring 

Regulatory and Standards Engagement 
Assurance organizations should participate in developing audit standards: 

●​ Contribute to standards bodies defining AI assurance requirements 
●​ Develop consensus methodologies for AI system audits 
●​ Share best practices through professional organizations 
●​ Provide regulators with insights about audit feasibility and effectiveness 

5.4 For Standards Bodies 

Standards organizations provide the technical frameworks enabling interoperability and 
consistency across jurisdictions and sectors. 

ETSI (European Telecommunications Standards Institute): 

●​ Continue developing common reporting standards for AI incidents 
●​ Harmonize with OECD, ISO, and NIST efforts to ensure international interoperability 
●​ Engage AI developers and deployers in standards development processes 
●​ Pilot standards with early adopters to refine practical implementation 

ISO (International Standards Organization): 

●​ Develop AI incident response standards building on ISO 27001 (Information Security 
Management) and ISO 31000 (Risk Management) 

●​ Coordinate with NIST, ETSI, and OECD to ensure consistency across frameworks 
●​ Create sector-specific guidance adapting general frameworks for financial services, 

healthcare, defense, and other regulated domains 

NIST (National Institute of Standards and Technology): 

●​ Expand AI Risk Management Framework guidance to include detailed incident response 
specifications 

●​ Develop technical standards for AI system monitoring and logging 
●​ Create guidance on severity classification for AI incidents 
●​ Publish reference implementations and case studies 

IEEE (Institute of Electrical and Electronics Engineers): 

●​ Develop best practices and implementation guidance for practitioners 
●​ Create training and certification programs for AI incident responders 
●​ Facilitate practitioner communities for sharing lessons learned 

 

 



5.5 For Regulators 

Regulatory bodies have unique authority to mandate incident response processes, establish 
reporting requirements, and create incentives for systematic approaches. 

Establish Clear Requirements: 

●​ Define mandatory incident reporting for high-risk AI systems based on sector, 
application, and potential impact 

●​ Specify minimum incident response capabilities appropriate to system risk levels 
●​ Set reporting timelines and formats aligned with international standards 
●​ Provide safe harbor provisions for good-faith reporting to encourage transparency rather 

than concealment 

Enable Information Sharing: 

●​ Create legal frameworks permitting confidential incident sharing among organizations 
●​ Establish or designate entities with aggregation and analysis capabilities 
●​ Publish cross-organizational pattern analyses informing sector-wide learning while 

protecting individual organizational identities 
●​ Protect proprietary information while enabling collective intelligence 

Provide Guidance and Resources: 

●​ Publish incident response frameworks and templates organizations can adapt to specific 
contexts 

●​ Offer implementation guidance tailored to different sectors and organization sizes 
●​ Create maturity assessment tools organizations can use for self-evaluation 
●​ Fund research on incident patterns, root causes, and effective response practices 

Coordinate Across Jurisdictions: 

●​ Harmonize reporting requirements internationally to reduce compliance burden on 
global organizations 

●​ Share incident data across regulatory bodies through secure channels 
●​ Avoid conflicting requirements creating impossible compliance situations 
●​ Enable global AI deployments with consistent incident response expectations 

Build Analytical Capacity: 

●​ Develop capabilities for pattern recognition across incident reports from multiple 
organizations 

●​ Invest in technical expertise enabling analysis of AI-specific failure modes 
●​ Create systems for tracking sector-wide reliability trends over time 
●​ Use aggregated incident data to inform evidence-based policy development 

5.6 For Professional Organizations 

Professional organizations can facilitate information sharing, build practitioner communities, and 
develop consensus practices that complement formal regulatory requirements. 

 



Information Sharing and Analysis Centers (ISACs) for AI: 
ISACs have proven effective for sharing cybersecurity information in financial services, 
healthcare, aviation, automotive, and energy. Similar structures could serve the AI sector: 

●​ Establish member-based organizations for confidential incident sharing among 
competitors 

●​ Provide anonymous reporting mechanisms protecting organizational identity 
●​ Aggregate and analyze patterns across members to identify emerging threats 
●​ Distribute threat intelligence and defensive guidance to membership 
●​ Enable more complete incident information sharing than public disclosure allows 

AI-focused ISAC-like centers would complement public databases like the AI Incident Database 
and OECD AI Incidents Monitor by providing trusted venues where organizations share 
sensitive technical details, competitive concerns do not prevent reporting, and members receive 
actionable intelligence about threats affecting their systems. 

Training and Education: 

●​ Develop incident response training programs addressing AI-specific characteristics 
including non-determinism, context-dependency, and emergent behaviors 

●​ Provide toolkits and resources for organizations implementing the framework 
●​ Build practitioner communities enabling ongoing knowledge exchange 

Standards and Best Practices: 

●​ Convene stakeholders from industry, government, academia, and civil society to develop 
consensus approaches 

●​ Document case studies and lessons learned for broader dissemination 
●​ Publish guidance materials incorporating field experience and evolving understanding 

 

 



Section 6. Conclusion 

Organizations deploying AI-enabled systems face an urgent need for systematic incident 
response processes. Ad hoc responses fail to build institutional knowledge, enable learning from 
failures, or support continuous reliability improvement. This white paper presents a 
comprehensive framework adapting proven reliability engineering practices from complex 
systems domains to AI-enabled systems. The framework is intentionally generalizable, enabling 
organizations to customize the seven-step process for their operational contexts while 
maintaining compatibility with broader ecosystem coordination. The paper provides tailored 
guidance for each stakeholder category (developers, deployers, users, oversight bodies, 
independent evaluators, and assurance organizations), clarifying distinct roles and responsibilities 
across the incident response ecosystem. This ecosystem approach enables pattern recognition, 
shared learning, and systematic reliability improvement that no individual organization can 
achieve alone. 

6.1 The Framework 

This framework treats AI-enabled systems as what they are: complex systems requiring 
systematic incident response processes. Decades of experience in aerospace, financial services, 
healthcare, and critical infrastructure demonstrate that complex systems demand preparation 
before incidents occur, systematic investigation when they happen, and continuous improvement 
based on lessons learned. AI systems benefit from these proven approaches while requiring 
adaptation for non-deterministic behavior, context-dependent failures, and adaptive 
characteristics. 
 
The seven-step incident response process (detect, assess, stabilize, report, investigate, correct, 
verify) provides a complete cycle for responding to AI incidents. A distinguishing feature of this 
framework is its integration of response actions with Preparedness Recommendations. 
Organizations should make investments in infrastructure, training, procedures, and capabilities 
before deploying AI systems, not after incidents occur. This preparedness-focused approach 
moves organizations from reactive crisis management to systematic reliability improvement. 
 
This framework complements existing AI incident and governance frameworks. It provides 
operational detail for implementing incident response capabilities, these standards require, while 
addressing AI-specific challenges, including non-deterministic behavior, context-dependent 
failures, and system-of-systems interactions. 

6.2 The Ecosystem Requirement 

Organizations can implement effective AI incident response independently using the seven-step 
framework. However, coordinated action across developers, deployers, users, oversight bodies, 
independent evaluators, and assurance organizations multiplies these benefits. Each stakeholder 
brings distinct capabilities that, when combined, enable comprehensive ecosystem-wide 
improvement. Coordination enables pattern recognition across incidents, shared learning about 
failure modes, and systematic reliability improvement across the field, capabilities that are 
difficult for individual organizations to achieve alone. 
 
Building this ecosystem requires infrastructure that does not yet exist in mature form: 
standardized reporting structures enabling computational analysis, information sharing 
mechanisms balancing transparency with proprietary protection, and clear delineation of roles 

 



and responsibilities. Financial crime enforcement demonstrates that such infrastructure can be 
built and provides proven models for cross-organizational incident collection while maintaining 
confidentiality. 

6.3 The Transition to Systematic Response 

Most organizations currently handle AI incidents through improvisation, developing responses 
during active crises rather than executing predetermined procedures. This reactive approach 
limits the ability to build institutional knowledge, learn systematically from failures, or track 
reliability improvement over time. 

Implementing the framework presented here enables organizations to respond through 
established processes: detection mechanisms identify problems early, pre-planned procedures 
enable rapid harm containment, standardized investigation methodologies reveal root causes, 
documented correction approaches address underlying issues, and verification processes confirm 
whether improvements work. Incidents become opportunities for learning and reliability 
enhancement rather than isolated crises requiring improvisation. 

The transition requires investment in preparedness infrastructure before deploying AI systems, 
personnel with appropriate multidisciplinary expertise, coordination across organizational 
boundaries, and participation in ecosystem information sharing. Organizations that already have 
incident management capabilities can adapt them for AI-specific characteristics. Benefits include 
reduced harm from AI incidents, improved system reliability and incident reduction through 
continuous learning, and regulatory compliance. 

6.4 Moving Forward 

Organizations can use this framework to assess current capabilities, identify gaps, and prioritize 
improvements. Beginning with detection mechanisms, severity assessment criteria, and incident 
documentation procedures provides a foundation for building out the complete seven-step 
process. Preparedness infrastructure developed before incidents occur enables more effective 
response than capabilities built during active crises. 

As AI systems become more capable, autonomous, and integrated into critical functions, 
systematic incident response becomes increasingly important for continuous reliability 
improvement. Organizations that develop these capabilities will be better positioned to deploy 
AI securely, respond to incidents effectively, and show measurable improvement over time. 
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