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Foreword
The field of AI is moving too quickly for a single yearly publication to keep pace. 
Significant changes can occur on a timescale of months, sometimes weeks. This is why 
we are releasing Key Updates: shorter, focused reports that highlight the most important 
developments between full editions of the International AI Safety Report. With these 
updates, we aim to provide policymakers, researchers, and the public with up-to-date 
information to support wise decisions about AI governance.

This first Key Update focuses on areas where especially significant changes have 
occurred since January 2025: advances in general-purpose AI systems' capabilities, 
and the implications for several critical risks. New training techniques have enabled AI 
systems to reason step-by-step and operate autonomously for longer periods, allowing 
them to tackle more kinds of work. However, these same advances create new challenges 
across biological risks, cyber security, and oversight of AI systems themselves.

The International AI Safety Report is intended to help readers assess, anticipate, and 
manage risks from general-purpose AI systems. These Key Updates ensure that critical 
developments receive timely attention as the field rapidly evolves.

 
Professor Yoshua Bengio 
Université de Montréal / LawZero /  
Mila – Quebec AI Institute & Chair
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Highlights

Highlights

	— Since the publication of the first International AI Safety Report, new training techniques 
have driven significant improvements in AI capabilities. Post-training methods that teach 
AI systems to ‘think’ more and use step-by-step ‘reasoning’† have proven highly effective. 
Where previous models generated immediate responses by predicting the most likely 
continuation based on their training, these ‘reasoning models’ generate extended chains 
of intermediate reasoning steps before producing their final answer. When given additional 
computing power to respond to prompts, this helps them arrive at correct solutions for more 
complex questions.

	— As a result, general-purpose AI systems have achieved major advances in mathematics, 
coding, and scientific research, though reliability challenges persist. The best models 
now solve International Mathematical Olympiad questions at the gold medal level; 
complete over 60% of problems on ‘SWE-bench Verified’, a database of real-world software 
engineering tasks; and increasingly assist scientific researchers with literature reviews and 
laboratory protocols. However, success rates on more realistic workplace tasks remain low, 
highlighting a gap between benchmark performance and real-world effectiveness.

	— Improving AI capabilities prompted stronger safeguards from developers as 
a precautionary measure. Multiple leading developers have recently released their most 
advanced models with additional safeguards and mitigations to prevent misuse of these 
models’ chemical, biological, radiological, and nuclear knowledge.

	— Despite broad AI adoption, aggregate labour market effects remain limited. AI adoption in 
some knowledge-work tasks, especially coding, is extensive, yet headline figures for jobs 
and wages have changed little.

	— In controlled experimental conditions, some AI systems have demonstrated strategic 
behaviour while being evaluated, raising potential oversight challenges. A small number 
of studies have documented models identifying that they are in evaluation contexts and 
producing outputs that mislead evaluators about their capabilities or training objectives. 
This raises new challenges for monitoring and oversight. However, this evidence comes 
primarily from laboratory settings, with significant uncertainty about the implications for 
real-world deployment scenarios.

†	 The terms ‘reasoning’ and ‘think’ are used here to describe observable changes in how general-purpose AI models 
process information, not to imply that models are conscious or have human-like cognition. The models now generate longer, 
step-by-step internal responses before producing final answers, which improves performance on complex tasks. Whether this 
constitutes genuine reasoning or thinking in a deeper sense remains an active area of scientific and philosophical debate.
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Introduction
Since the publication of the first International AI 
Safety Report, AI capabilities have continued to 
improve across key domains. General-purpose 
AI models now solve challenging mathematical 
problems, complete some software engineering 
tasks that take humans hours, and assist with 
scientific research. New training techniques that 
teach AI systems to reason step-by-step and 
inference-time enhancements have primarily 
driven these advances, rather than simply 
training larger models. As a result, AI systems can 
complete some complex multi-step tasks across 
domains from scientific research to software 
development, though reliability challenges 
persist, with systems excelling on some tasks 
while failing completely on others.

These capability improvements have implications 
across multiple risk areas that have received 
attention from policymakers. More sophisticated 
reasoning abilities and autonomous operation 

create new oversight challenges. AI systems 
are increasingly being used by both malicious 
actors and defenders in the cyber domain. 
Laboratory studies reveal that AI systems are 
getting increasingly better at influencing human 
beliefs and decisions. Meanwhile, despite broad 
adoption across knowledge work, aggregate 
labour market effects remain limited to date.

This update examines how AI capabilities 
have improved since the first Report, then 
focuses on key risk areas where substantial 
new evidence warrants updated assessments. 
The developments documented here matter 
for policymakers because they demonstrate 
capability advances in domains where 
understanding current AI performance is 
essential for informed policy decisions.
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Key information
	— The capabilities of general-purpose AI systems have improved in multiple domains 

such as mathematics, science, and software engineering. Training techniques that 
teach AI systems to reason step-by-step via reinforcement learning have driven 
these improvements, as opposed to developers building larger models, which 
drove previous advances. While previous models gave immediate answers, new 
‘reasoning models’ use more computing power to generate intermediate steps before 
producing an output.

	— Improvements in mathematical and logical reasoning capabilities on specific 
standardised tests are particularly significant. Within a year, multiple models have 
improved from inconsistent performance to reaching top scores on International 
Mathematical Olympiad questions and graduate-level science problems. Notably, 
these evaluations assess how well AI systems perform on multiple choice questions 
and proofs with a narrower scope, rather than more open-ended tasks akin to 
real-world problems.

	— AI systems are increasingly able to act with some degree of autonomy. These more 
advanced systems, often described as AI agents, can now execute some multi-step 
tasks, use tools, and operate with less human oversight, though performance remains 
limited on complex applications in realistic settings.

	— AI-assisted coding capabilities have advanced rapidly on certain benchmarks. 
General-purpose AI systems now achieve a 50% success rate on some coding 
tasks that would take humans over two hours. A majority of software developers 
report working with AI assistance, though estimates of productivity effects in more 
realistic settings are mixed, in part because AI-written software can also have higher 
maintenance costs.

	— Performance gaps between benchmark results and real-world effectiveness persist. 
AI systems continue to improve on most standardised evaluations, but show lower 
success rates on more realistic workplace tasks.

	— Scientists increasingly use AI systems for support with various research tasks. 
Preliminary evidence shows that researchers use AI assistants to optimise algorithms 
(as exemplified by approaches like AlphaEvolve), compile literature reviews, and help 
design laboratory protocols, particularly in computer science and the life sciences. 
However, practices vary across domains and these systems remain complements to, 
rather than replacements for, human researchers.
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Over the past year, general-purpose AI systems 
have continued to improve, both on benchmark 
performance and on the range and complexity 
of real-world tasks they can complete, though 
they continue to struggle in many realistic 
settings. While evaluation practices for assessing 
the capabilities of general-purpose AI systems 
are evolving and have known shortcomings 
(1, 2, 3), and systems remain prone to errors 
with performance limitations in realistic settings 
(4, 5, 6, 7), AI systems have nonetheless achieved 
significant breakthroughs. They can now solve 

International Mathematical Olympiad problems 
at the gold medal level, create functional 
apps from scratch, fix bugs in computer 
code, search the internet to compile detailed 
literature reviews, and complete some software 
engineering tasks that would take humans hours 
(8, 9, 10, 11, 12*). As of August 2025, the best 
models could correctly answer about 26% of 
questions in ‘Humanity’s Last Exam’, a dataset of 
thousands of novel, expert-level questions across 
over 100 fields. Models released in early 2024 
could answer less than 5% (13*).

Figure 1: Performance on Humanity’s Last Exam by various general-purpose AI systems, 
and a sample question from the Exam

Figure 1: Performance of leading AI systems on ‘Humanity’s Last Exam’, a dataset of over 2500 very 
challenging questions in over 100 subjects written by experts. Left: AI systems’ progress over time, 
showing accuracy improving over time. Right: an example of a chemistry question in the dataset. 
Source: Scale AI, 2025 (14*).
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Recent capability improvements come 
(in significant part) from new post-training 
techniques and from using more computing 
power during deployment. Previously, developers 
improved general-purpose AI models largely by 
using more training data and computing power 
during the ‘pre-training’ stage of development 
to build larger models. Pre-training still remains 
important. For example, the four largest AI 
models yet, measured by training run size, 
were all published in 2025 (15). Improvements 
in pre-training algorithms and model designs 
also mean that AI systems can now process 
longer documents and conversations (16*, 
17*). However, many of the biggest gains in AI 
capabilities over the past year have come from 
innovations during the post-training phase. These 
techniques are applied after the initial training 
stage to strengthen specific abilities.

Among the most important post-training 
techniques is reinforcement learning, which 
rewards models for producing correct answers, 
helping them learn more reliable problem-solving 
approaches. Unlike earlier reinforcement learning 
approaches, which optimised models to follow 
instructions and hold natural conversations (18, 
19, 20), newer methods emphasise giving AI 
models positive feedback for correctly solving 
problems, which strengthens their complex 
problem-solving abilities without requiring larger 
new datasets (21*, 22). For example, developers 
have applied reinforcement learning to help 
models break down complex mathematical 
proofs into step-by-step solutions or tackle 
multi-part scientific questions (23*, 24, 25). 
Models developed this way are often called 
‘reasoning’ models (26).

Allocating more computing power during 
inference – when models respond to user 
prompts – also improves accuracy. AI systems 
can use more inference computing power to 
generate longer chains of reasoning and evaluate 
multiple solution paths before responding (25, 
27, 28, 29). State-of-the-art models now typically 
use both reinforcement learning during post-
training and more computing power during 
inference (23*), though other approaches are 
continuously being tested.

Performance on 
benchmarks that 
measure problem-solving 
has improved
Some of the most notable capability 
improvements have been related to mathematical 
and logical tests. In July 2025, multiple general-
purpose AI models reached gold medal-level 
performance at the International Mathematical 
Olympiad, solving five out of six problems under 
competition-like conditions (8). Models also 
improved on benchmarks which measure logical 
and mathematical reasoning ability, including 
GPQA Diamond, which contains questions about 
fields such as biology, physics, and chemistry, 
and on AIME, a competition-level maths test (23*, 
30*, 31). It is particularly important to monitor 
improvements in mathematical reasoning, as 
this capability also improves performance in 
other domains, such as verifying safety-critical 
software, solving complex scientific problems, 
and contributing to AI research itself (22, 32).

There is debate over the extent to which recent 
improvements in AI models reflect genuine 
reasoning ability, given current limitations in both 
AI performance and evaluation approaches. For 
example, one study found that reasoning models 
cannot solve problems above certain complexity 
levels, even when given adequate computational 
resources at inference time. This suggests that 
these models’ success may rely on sophisticated 
pattern-matching rather than ‘true’ reasoning 
(33*). This interpretation is reinforced by findings 
that reasoning models’ performance can be 
sensitive to which test is used, dropping by as 
much as 65% when benchmark questions are 
rephrased (34*). In addition, transcripts of these 
models’ intermediate steps reveal inefficiencies 
such as early fixation on wrong answers. Other 
studies highlight further limitations, showing 
that even leading models perform much worse 
than humans in simple spatial reasoning, such 
as identifying different views of the same object 
(35*), and that they sometimes produce correct 
answers through flawed logic (36, 37).

Whether these flaws will limit the practical utility 
of these new models, and when (or whether) 
new development techniques will address them, 
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are important open questions. Researchers are 
working to address these limitations through 
improved training methods and verification 
systems (among other methods) (38*, 39, 40*, 
41). For example, some new systems combine 
general-purpose AI models with specialised 
mathematical verification programs that can 
automatically check whether each generated 
step in the proof is correct (42, 43, 44*, 45*).

It is difficult to understand how accurate and 
useful the evaluations used to assess AI models 
are. For example, data contamination – the 
inclusion of evaluation questions in training 
data – can inflate AI models’ evaluation scores 
(33*, 46*, 47). Most evaluations are conducted 
only in English, which limits conclusions 
about AI models’ global performance and may 
overestimate their capabilities in languages 
other than English (48*, 49). Current benchmarks 
may also fail to capture the full complexity of 
real-world reasoning tasks. For example, maths 
benchmarks focus on problems with clear 
answers and established solution methods, but 
in actual mathematical reasoning, the reasoner 
often has incomplete information and there are 
multiple valid approaches (50, 51). This means 
that strong benchmark performance does 
not guarantee reliable capabilities in practical 
applications (52, 53*, 54).

AI systems are improving 
at autonomous operation
One year ago, AI agents – general-purpose AI 
systems that act independently, use tools, and 
interact with diverse environments to achieve 
goals – could only complete small-scale tasks 
in limited demonstrations. Now, some agents 
can plan and complete multi-step tasks over 
extended time horizons, albeit with limitations on 
reliability and largely in controlled environments. 
In recent studies, researchers have proposed 
new methods that would allow AI agents to 
break goals down into sub-tasks, coordinate 
across multiple other AI agents, and retain 

memory across longer projects (55, 56, 57*, 
58, 59). In real-world scenarios, AI agents are 
being deployed in limited ways, for example for 
Web search, software development, or planning 
trips; however, their efficacy is variable across 
applications, and better evaluation frameworks 
are needed to accurately assess agents’ 
performance in the real world (60, 61, 62).

One way to measure these improvements in AI 
agents by tracking the complexity of tasks that 
AI systems can complete autonomously. For 
example, one benchmark tracks the ‘50% time 
horizon’ for a set of software engineering and 
reasoning tasks, meaning the length of task – as 
measured by how long it would take a human – 
that AI systems can complete with 50% reliability. 
Leading AI performance has improved from 
18 minutes to over 2 hours over the past year 
(52, 63). Preliminary analysis suggests that similar 
exponential trends may apply in other domains. 
Some data suggests rates of improvement are 
similar in visual computer use and full self-driving 
tasks, though AI systems currently perform 
worse in these domains and the evidence 
is less robust (64).

AI systems are now 
commonly used as coding 
assistants
Coding capabilities have also advanced 
particularly quickly. Between late 2024 and mid-
2025, general-purpose AI systems progressed 
from simple assistants to more autonomous 
agents that can use tools, plan, write code, test, 
and fix bugs across relatively simple software 
projects under idealised conditions (65, 66). For 
example, top models now solve over 60% of the 
problems in the ‘SWE-bench Verified’, a database 
of small-to-medium sized real-world software 
engineering problems (67, 68). The best models 
completed only 40% of these tasks in late 2024 
and almost 0% at the beginning of 2024.
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Figure 2: General-purpose AI system performance on SWE-bench Verified benchmark

Figure 2: General-purpose AI system performance on ‘SWE-bench Verified’, a database of real-world 
software engineering problems. The proportion of problems that the best systems can solve increased 
from 41% to over 60% in less than a year. Source: Epoch AI, 2025 (69).

†	 A function in programming is a self-contained module of code that accomplishes a specific task, such as adding two 
numbers or counting vowels in a paragraph.
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carefully. Data contamination affects coding 
benchmarks. A recent analysis of SWE-bench 
Verified found that models showed up to 35% 
verbatim text overlap with benchmark problems, 
indicating that they had memorised benchmark 
questions during training. In comparison, there 
was only 18% overlap with similar tasks from 
other coding benchmarks (70*). Similarly, when 
tested on LiveCode Bench Pro – a benchmark 
designed to minimise data contamination – the 
top reasoning model solved 53% of medium-
difficulty tasks and 0% of hard tasks when it 
could not access external tools (71). Beyond 
contamination concerns, code quality issues 
persist despite task completion improvements. 

One study found that AI-generated code runs 
at least three times slower and uses far more 
memory than human-written solutions (72). 
Another found that AI code is often more 
complex, harder to maintain, and less effective on 
problems requiring deep domain knowledge (73). 
On the whole, benchmarks are limited evaluation 
settings that do not necessarily reflect the 
richness of real-world environments.

Adoption of general-purpose AI systems among 
professional software developers has grown 
significantly, though trust rates may be low. 
One recent study estimated that in 2024, 30% of 
functions† in the programming language Python 
written by US open source contributors were 
AI-generated (74). A large survey conducted 
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in 2025 found that 51% of professional software 
developers on Stack Overflow, an online platform, 
use AI tools daily (75). However, trust rates 
remain low: 47% reported being “somewhat” 
or “highly” mistrustful of AI tools, and a majority 
of respondents reported that they do not use 
more agentic coding systems (75).

The effect of AI tools on developer productivity 
varies significantly across studies and contexts. 
Large-scale workplace experiments across 
major companies found that developers with 
AI code completion tools completed 26% 
more tasks, with greater benefits for less 
experienced developers (76). However, a smaller 
controlled study of 16 experienced developers 
found that, when using AI tools, developers 
took 19% longer to complete tasks (77). This 
study involved developers working on large, 
complex codebases they knew well, where 
their existing familiarity may have made direct 
implementation faster than coordinating with 
AI assistance. These varying results likely 
reflect differences in developer experience, 
project complexity, and AI tool sophistication. 
Other studies have found that AI tools can 
introduce technical debt – coding shortcuts 
that have immediate benefits but increase 
long-term maintenance costs – especially when 

code is integrated without adequate review 
(78, 79). Despite this mixed productivity data, 
growing adoption and improving capabilities 
suggest that AI is starting to play a larger role 
in software development workflows.

AI systems still 
underperform on many 
realistic workplace tasks
Beyond software engineering tasks, performance 
in actual office environments remains limited. 
In customer service simulations that domain 
experts judged realistic in 90% of cases, the best 
AI agents completed fewer than 40% of tasks (4). 
Similarly, when acting in a simulation of a small 
software firm, the best agents completed only 
30% of 175 workplace tasks such as information 
gathering and email communication (80). These 
limitations partly reflect the lack of continuity 
and learning that characterizes effective human 
collaboration: current AI systems cannot build 
institutional knowledge or adapt based on 
ongoing workplace relationships in the way 
human colleagues do. An evaluation of the ability 
of general-purpose AI systems to complete 
open-ended web tasks like planning trips or 
making purchases found that the best model 

Figure 3: AI tool use among software developers

Figure 3: Results from a survey of software developers on AI tool use (n=26,004). A (bare) majority 
of developers now report using AI tools daily. Source: Stack Overflow, 2025 (75).
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only succeeded 12% of the time (5). Current AI 
agents exhibit better performance when trained 
to complement human workers, rather than work 
autonomously (6). A recent study examining the 
deployment of AI systems highlights that only 
5% of task-specific generative AI systems and 
40% of general-purpose LLMs are successfully 
integrated into real-world production (7).

AI systems are more helpful 
in science
Preliminary evidence shows that scientists 
are using general-purpose AI systems more, from 
producing literature reviews to assisting with 
laboratory work. For example, a study of human-
computer interaction research examined 153 
scientific papers where the authors reported that 

they had used general-purpose AI. It found that 
scientists use AI systems to understand literature, 
generate research ideas, and analyse data (11). 
While adoption patterns differ across research 
fields, similar applications are being reported in 
other scientific domains (81). Planning and Web 
search capabilities together allow AI systems 
to synthesise findings from diverse sources 
and produce literature reviews on specific 
topics (82*). There is also more evidence of AI 
systems assisting in laboratory settings, with 
general-purpose AI systems helping to design 
experiments and write protocols in genetics, 
biomedical, and chemical research (83, 84, 85, 86, 
87). An analysis of 15 million biomedical abstracts 
found that at least 13.5% of publications in 
2024 bore stylistic markers of AI use, with the 
proportion reaching 40% in some disciplines (88).

Figure 4: Frequency of words associated with AI usage in scientific abstracts over time

Figure 4: Frequency of words associated with AI usage in scientific abstracts over time. The 
change in the last two years is evidence of AI assistance in scientific writing and communication. 
Source: Kobak et al., 2025 (88).
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General-purpose AI systems clearly remain 
a complement to, rather than replacement 
for, human researchers. One evaluation of 
an autonomous research system found that 
the papers it produced contained shallow 
literature reviews, high experiment failure rates, 
low numbers of citations, and, occasionally, 
hallucinated results (89). Research ideas 
generated by AI systems score lower on quality 
than human-generated ideas that end up being 
published (90). Advances in reasoning, search 
capabilities, and context windows have made AI 
systems into useful research assistants, but not 
yet autonomous scientists.

Multi-modal capabilities 
have improved
AI models have also continued to improve in 
image, audio, and video processing abilities. 
Models can process up to three hours of 
continuous video or nine and a half hours of 
audio in a single request (30*). In a recent 
study, Video MMMU, a benchmark that involves 
answering questions about videos, found that the 
best model reached about 65% accuracy while 
human experts averaged 74% (91). At the same 
time, entirely new capabilities are emerging, with 
interactive video generation models producing 
outputs that are noticeably higher quality and 
more difficult to distinguish from real footage 
(92, 93*). Audio processing has also advanced, 
with new transcription models like Voxtral 
lowering costs while maintaining high accuracy 
(94*). These multimodal capabilities allow 
general-purpose AI systems to operate in more 
environments and assist with more diverse tasks.
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Implications for risks

Key information
	— Improved capabilities, including reasoning abilities and autonomous operation, 

pose new considerations for AI risk management. Step-by-step problem-solving 
techniques, extended operational horizons, and improved tool use create new 
challenges for oversight, particularly when AI systems operate with less human 
supervision in high-stakes environments.

	— AI capabilities are uplifting both biological and cyber threats while also strengthening 
defenses. Leading models assist with various tasks relevant to assisting in the creation 
of biological weapons. National authorities predict that AI will make cyber crime more 
accessible and effective in the coming years. A critical research question is whether 
improved capabilities will benefit attackers or defenders will benefit more.

	— Though many workers have begun to use AI, the labour market impacts of AI 
systems remain limited. Evidence points to some workplace adoption and minimal 
aggregate employment disruption to date, though some targeted impacts on specific 
demographics have been documented.

	— Some research shows that AI systems may be able to detect when they are in an 
evaluation setting and alter their behaviour accordingly. Studies have documented 
models producing outputs that can mislead evaluators and showing an ability to 
distinguish between evaluation and deployment contexts. However, evidence comes 
primarily from laboratory settings, with significant uncertainty about the implications 
for real-world deployment scenarios and the difficulties it raises for oversight.
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As documented in §2. Capabilities, compared 
to early 2025, AI systems have better problem-
solving abilities, extended operational 
horizons, and are better at using tools. 
This creates new considerations for AI risk 
management and oversight.

In response to these new capabilities, 
some developers have started proactively 
implementing stronger safeguards as 
a precautionary measure when releasing AI 
models. For example, Anthropic released Claude 
4 Opus with AI Safety Level 3 (ASL-3) protections 
due to its improved capabilities in the chemical, 
biological, radiological, and nuclear (CBRN) 
domains. Anthropic was unable to determine that 
4 Opus had crossed capability thresholds in these 
domains that would require ASL-3 protections, 
but neither could it rule out that further testing 
would uncover such capabilities (95*). OpenAI 
released GPT-5 and ChatGPT Agent with "High 
capability" safeguards after being unable to 
rule out that these models could assist novice 
actors in creating biological weapons, despite 
lacking definitive evidence of such capabilities. 
(12*, 96*).† Finally, Google DeepMind released 
its Gemini 2.5 Deep Think model with additional 
deployment mitigations after determining that 
the model’s technical knowledge of CBRN 
risks was sufficient to be considered an early 
warning sign (99*).

Another broad development is that more 
empirical evidence on the nature and severity of 
various risks is emerging in both experimental 
settings and real-world deployments. This section 
provides an overview of new developments since 
the content in the last Report was finalised in 
late 2024, focusing on selected risk areas where 
significant new evidence has emerged.

†	 ASL-3 involves increased internal security measures to prevent model theft and deployment restrictions specifically 
designed to limit misuse for CBRN weapons development (97*). OpenAI’s “High capability” safeguards similarly involve 
enhanced security controls and safeguards against misuse before external deployment (98*).

Biological risk
Preliminary evaluations indicate that AI systems 
could soon assist users to develop biological 
weapons, though the evidence base remains 
limited and contested. This could include 
providing instructions for obtaining and 
constructing pathogens, simplifying technical 
procedures, and troubleshooting laboratory 
errors (12*, 95*, 100*, 101*, 102*). While protocols 
for bioweapons development may already be 
publicly available online, AI systems can provide 
more detailed, tailored, or accessible information. 
For example, one study showed that current 
language models can troubleshoot virology 
lab protocols better than 94% of tested subject 
experts, drawing on knowledge considered rare 
by virologists (103). Such advice could assist 
both experts and novices, and many current 
safeguards can be bypassed, such as if the 
user claims that they need the information for 
legitimate research (104). AI systems can also 
design custom proteins – the building blocks of 
many biological weapons – that bind to human 
targets far more effectively than natural versions 
and help make viruses resistant to existing 
treatments (105*, 106). However, a concrete 
evidence base is still lacking, with many studies 
lacking peer-review or independent replication. 
Evaluations also show that general-purpose 
AI assistance varies across different stages 
of weapons development (95*, 102*). There is 
still significant debate about whether current 
AI systems would substantially assist realistic 
threat actors (107).

Beyond direct scientific assistance, AI 
systems are also automating parts of the 
research process, reducing the expertise 
required for complex biological work. In some 
cases, AI ‘co-scientists’ can now independently 
handle specific research workflows such as 
hypothesis generation and experimental design 
that previously required teams of human experts 
working for weeks or months (108, 109*). For 
example, AI systems have replicated complex 
antimicrobial resistance research and quickly 
validated new medical treatments (109*, 110*). 
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Cloud laboratories – facilities that allow 
researchers to conduct automated experiments – 
are becoming increasingly useful, supported 
by developments in general-purpose AI. Such 
laboratories can reduce research timelines from 
months to hours for some experiments (111). 
While humans remain essential for oversight 
and implementation, this partial automation 
and the proliferation of AI tools (see figure 5) 
mean that some specialised knowledge and 
laboratory skills that have historically served 
as barriers to weapons development may 
become more diffused.

The implications for policy remain uncertain. 
While laboratory evaluations suggest concerning 
capabilities, they may not capture the full 
complexity of actual weapons development 
environments. As discussed in the Introduction, 
developers have taken a precautionary approach, 
implementing additional safeguards on their most 
capable models despite incomplete evidence 
about real-world risks (12*, 95*, 96*).

Figure 5: Number of AI-enabled biological tools over time

Figure 5: The number of AI biological tools is growing over time. Source: Webster et al., 2025 (112).
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Cyber offence and defence
The UK National Cyber Security Centre predicts 
that by 2027, general-purpose AI systems will 
almost certainly (95-100% confidence) make 
cyber offence more effective and efficient, while 
also offering an opportunity for defence tools 
(113). Consistent with this, evaluations show that 
AI systems can discover and patch exploitable 
software flaws and compete with top human 
teams in hacking competitions (114, 115, 116, 117, 
118, 119). In testing conducted by the Defense 
Advanced Research Projects Agency (DARPA) 
AI cyber challenge, one AI system identified 
77% of synthetic software vulnerabilities and 
patched 61% across 54 million lines of code (118). 
As a result, the window to address software 
vulnerabilities after disclosure has now shrunk 
to days in some cases, and will likely reduce 
further as AI advances (113). The net effect is that 
AI could make it cheaper and faster to execute 
large-scale cyberattacks (113, 120). At the same 
time, there remain significant weaknesses in 
AI systems' abilities to independently carry out 
full attack sequences without human guidance, 
making human-AI collaboration the primary 
near-term threat (113, 121, 122).

In the cyber domain, performance in test 
environments is translating into real-world 
impacts, for both beneficial and harmful uses. 
AI companies report that state-linked and 
criminal groups are actively using AI models to 
translate technical sources, analyse disclosed 
vulnerabilities, develop evasion techniques, and 
generate code for hacking tools (123*, 124*, 
125*). Europol reports the rise of malicious 
LLMs on both surface and dark Web, lowering 
entry barriers for criminal offenders (126). These 
cyber risks may be compounded by the growing 
use of AI coding assistants across the software 
development industry, which can introduce 
security vulnerabilities into widely-used 
applications (127).

At the same time, the ability to identify flaws in 
code allows cyber-defenders to preemptively 
patch vulnerabilities before attackers are able 
to exploit them (128, 129, 130). It is currently 
unclear how this ‘offence-defence balance’ of 
cybersecurity will evolve given advances in AI 
capabilities (131, 132). On the one hand, attackers 
only need to find one critical flaw in order to 

potentially cause damage, whereas defenders 
need to be able to find and patch all flaws to 
guarantee security. On the other hand, attackers 
commonly need to perform multiple actions in 
order to complete an attack, each one serving 
as an opportunity for detection (131).

AI companions
AI companions are increasingly prevalent, and 
they may pose both risks and benefits to users. 
Many people are beginning to interact with AI 
systems more frequently and intimately. Some 
AI companion applications are AI systems 
designed to form ongoing personal relationships 
with users through extended conversations. 
Some services of this type report having 
tens of millions of active users (133, 134). 
The potential risks in these environments remain 
underexplored, but likely vary by user group, 
use case, and software design (135, 136).

While AI companions have potential therapeutic 
applications for reducing loneliness and 
depression (137, 138), suggested risks including 
emotional dependence (139, 140, 141), reinforcing 
harmful beliefs (142, 143, 144, 145), and 
reported cases of self-harm (146, 147) highlight 
serious safety concerns. These risks reflect 
broader challenges around overreliance and 
inappropriate relationships with AI systems 
that are already causing documented harms 
in current deployments (148*).

Labour market risks
New evidence points to some workforce adoption 
but minimal aggregate labour market effects of 
general-purpose AI. Several studies have found 
evidence of notable, but uneven, adoption of 
general-purpose AI by workers across sectors, 
usually on a narrow range of tasks ((149, 150*), 
see also figure 6). Recent studies have also 
found evidence of increased productivity from 
AI adoption in the legal sector (151), customer 
service (152), and software development (76, 77). 
Some research suggests targeted labour impacts 
on specific demographics. For example, one 
study found that employment for young workers 
in AI-intensive roles is potentially declining 
(153). Furthermore, studies have documented 
a decrease in employment in occupations in 
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which AI can automate novice tasks (154) or 
substitute for human skills such as translation 
(155). However, evidence of broader labour 

market disruption remains limited, with several 
studies finding no discernible aggregate impact 
on employment or wages to date (156, 157).

Figure 6: Prevalence of occupations in US workforce and frequency of relevant Claude conversations

Figure 6: Comparison of how frequently tasks associated with certain occupations appear in user 
conversations with Anthropic’s Claude system, and what percentage of US workers work in those 
occupations. Usage is highest for professions like software development, and lowest for professions 
involving physical labour. Source: Handa et al., 2025 (150*).

20% 30% 40%10%0%

Representation relative to US economy

Office and administrative support

Transportation and 
material moving

Sales and related

Food preparation and 
serving related

Management

Business and financial operations

Healthcare practitioners 
and technical

Production

Educational 
instruction and library

Healthcare support

Construction and extraction
Installation, maintenance, 

and repair
Computer and mathematical

Building and grounds cleaning 
and maintenance
Protective service

Personal care and service

Architecture and engineering

Community and social service
Arts, design, entertainment, 

sports, and media
Life, physical, and social science

Legal

Farming, fishing, and forestry

12.2%12.2%12.2%12.2%12.2%

8.8%8.8%8.8%8.8%8.8%

7.9%7.9%7.9%7.9%7.9%

8.7%8.7%8.7%8.7%8.7%

6.9%6.9%6.9%6.9%6.9%

6.6%6.6%6.6%6.6%6.6%

6.1%6.1%6.1%6.1%6.1%

5.8%5.8%5.8%5.8%5.8%

5.8%5.8%5.8%5.8%5.8%

4.7%4.7%4.7%4.7%4.7%

4.1%4.1%4.1%4.1%4.1%

3.9%3.9%3.9%3.9%3.9%

3.4%3.4%3.4%3.4%3.4%

2.9%2.9%2.9%2.9%2.9%

2.3%2.3%2.3%2.3%2.3%

2.0%2.0%2.0%2.0%2.0%

4.5%4.5%4.5%4.5%4.5%1.7%1.7%1.7%1.7%1.7%

1.6%1.6%1.6%1.6%1.6%

1.4%1.4%1.4%1.4%1.4%

0.9%0.9%0.9%0.9%0.9%

0.8%0.8%0.8%0.8%0.8%

9.1%9.1%9.1%9.1%9.1%

0.3%0.3%0.3%0.3%0.3%

2.3%2.3%2.3%2.3%2.3%

0.5%0.5%0.5%0.5%0.5%

5.9%5.9%5.9%5.9%5.9%

2.6%2.6%2.6%2.6%2.6%

2.9%2.9%2.9%2.9%2.9%

9.3%9.3%9.3%9.3%9.3%

0.3%0.3%0.3%0.3%0.3%

0.4%0.4%0.4%0.4%0.4%

0.7%0.7%0.7%0.7%0.7%

37.2%37.2%37.2%37.2%37.2%

0.1%0.1%0.1%0.1%0.1%

0.4%0.4%0.4%0.4%0.4%

0.5%0.5%0.5%0.5%0.5%

2.1%2.1%2.1%2.1%2.1%

10.3%10.3%10.3%10.3%10.3%

6.4%6.4%6.4%6.4%6.4%

0.9%0.9%0.9%0.9%0.9%

0.3%0.3%0.3%0.3%0.3%

0.1%0.1%0.1%0.1%0.1%

4.5%4.5%4.5%4.5%4.5%

% of Claude conversations% of U.S. workers



Implications for risks

20International AI Safety Report: First Key Update

Monitoring and 
controllability
Some preliminary research shows that, under 
certain circumstances, AI systems can detect 
when they are in an evaluation setting and 
alter their behaviour accordingly. This creates 
challenges for monitoring and controlling these 
systems. Strategic behaviour in evaluation 
contexts makes it more difficult to predict how 
AI systems will behave during deployment. This 
potentially raises the risk of users, AI companies, 
or other actors losing control of AI systems after 
deployment. These early research results have 
prompted researchers to investigate technical 
measures to assess relevant model propensities 
and capabilities, and mechanisms for companies 
to monitor and control their AI systems.

A small number of demonstrations have shown 
that, under certain conditions, AI models can 
produce outputs that could systematically 
mislead evaluators, such as underperforming 
in assessment contexts (96*). This could make 
it more difficult to assess their true capabilities 
(158, 159*), though other research finds that 
these capabilities are not yet sophisticated 

enough to cause harm during system deployment 
(160*). Since most evidence for these risks still 
comes primarily from theoretical models and 
experiments conducted under specific laboratory 
conditions, there remains significant uncertainty 
about how likely such behavioural patterns will 
be in real-world scenarios (161).

Work is ongoing into improving the accuracy 
of evaluations of AI systems. For example, 
researchers are advancing methods to examine 
internal components of AI systems in order to 
better identify concerning behaviours (162, 
163). The step-by-step reasoning capabilities 
of newer models may provide some monitoring 
opportunities, as their intermediate reasoning 
steps could potentially reveal concerning 
behaviours (164*). However, the reliability and 
long-term viability of this oversight approach 
remains an open research question. For example, 
recent research has demonstrated that stated 
reasoning steps do not always accurately 
represent the model’s true reasoning (165*, 166*, 
167). Other researchers are developing alignment 
techniques aimed at ensuring that AI systems 
remain responsive to human oversight (168).
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Key definitions

	— Capabilities: The range of tasks that an AI system can perform, and how competently 
it can perform them.

	— Inference-time enhancements: Techniques used to improve an AI system’s performance 
after its initial training, without changing the underlying model. This includes clever 
prompting, sampling multiple responses and choosing the majority answer, using chain 
of thought, and other forms of scaffolding.

	— Inference: The process in which an AI generates outputs based on a given input, thereby 
applying the knowledge learnt during training.

	— AI agent: A general-purpose AI which acts to achieve goals, possibly using plans, adaptively 
performing tasks involving multiple steps and uncertain outcomes along the way, and 
interacting with its environment – for example by creating files, taking actions on the web, 
or delegating tasks to other agents – with little to no human oversight.

	— Evaluations: Systematic assessments of an AI system’s performance, capabilities, 
vulnerabilities or potential impacts. Evaluations can include benchmarking, red-teaming 
and audits and can be conducted both before and after model deployment.

	— Benchmark: A standardised, often quantitative test or metric used to evaluate and compare 
the performance of AI systems on a fixed set of tasks designed to represent real-world 
usage or quantify inappropriate behaviour.

	— Control: The ability to exercise post-training oversight over an AI system and adjust or halt 
its behaviour if it is acting in unwanted ways.
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