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Executive Summary 

This report examines the risks and emergency 
response strategies for situations where 
advanced artificial intelligence (AI) systems 
act in unintended, dangerous ways beyond 
human control. These scenarios, referred to 
as loss of control (LOC), occur when human 
oversight fails to constrain an autonomous, 
general-purpose AI model, resulting in 
potentially catastrophic consequences. For a 
LOC scenario to arise, AI models must have 
the technical capability to evade human control 
and the potential to operate in ways that 
undermine oversight. 

Key Findings
LOC risks are increasingly plausible and 
remain unaddressed: Researchers have 
identified warning signs of control-undermining 
capabilities in advanced AI models – including 
deception, self-preservation and autonomous 
replication – which could potentially enable 
increasingly capable models to evade human 
oversight. 

Detection and early warning challenges: 
Governments and other stakeholders lack a 
common framework to analyse and respond 
to LOC risks. There is no clear consensus on 
which AI capabilities could lead to LOC, how 
safeguards may interact with such capabilities, 
or the best warning signs of LOC risks. This 
fragmented understanding hampers the ability 

of model developers or governments to detect 
early LOC warnings. Furthermore, current 
detection methods rely on pre-deployment 
model evaluations and ongoing monitoring 
by AI developers, with limited validation by 
independent third-party evaluators. However, 
models may operate differently in testing 
environments, potentially interacting with 
deployment contexts in unexpected ways. 
Open-source models present challenges to 
detection given the potential for unmonitored 
access and modifications to the model with 
limited oversight. 

Escalation gaps: Safety frameworks published 
by industry have yet to align on a consistent 
approach to risk escalation. Importantly, there 
are no clear thresholds for when a LOC incident 
should trigger an emergency response. 

Containment and mitigation limitations: 
Containing a LOC event requires advances in 
technical AI safety. Traditional cybersecurity 
safeguards such as endpoint detection, 
firewalls and malware detection are essential 
but may be insufficient. In extreme scenarios, 
national security and defence assets may be 
necessary to neutralise threats and prevent 
catastrophic harm. Containment measures 
may be ineffective if AI systems gain 
significant control over resources before risks 
are detected. 
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Summary of recommendations

Table 1: Summary of recommendations

Stage Recommendation

Detection AI Developers

•	 Monitor critical capability levels
•	 Identify early warning signs and  

emergent capabilities
•	 Establish standardised benchmarks  

and reporting 

Compute Providers
•	 Implement compute monitoring and anomaly 

detection
•	 Enhance hardware and supply chain oversight

National Government: 
AISI

•	 Lead efforts to establish shared criteria for  
AI LOC

•	 Coordinate evaluations and safety testing
•	 Monitor advanced capabilities and  

emergent capabilities

National Government: 
Other Agencies

•	 Assess and monitor AI-related cyber incidents
•	 Receive, analyse, and disseminate  

threat intelligence

Third Party Researchers

•	 Conduct evaluations, red-teaming and 
adversarial testing 

•	 Collaborate on standardised benchmarks  
and techniques

Escalation AI Developers

•	 Establish incident response protocols 
with defined escalation thresholds and 
organisational structures

•	 Respond and verify potential threshold breaches
•	 Conduct regular training and scenario drills

Compute Providers
•	 Notify AI developers and relevant authorities
•	 Coordinate with developers and  

national authorities 

National Government:  
AISI

•	 Establish disclosure and communication 
channels with AI developers and  
compute providers

•	 Receive and assess escalation notifications
•	 Provide oversight for threshold verification 

and escalation 

Stakeholder
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National Government: 
Other Agencies

•	 Provide forensic and technical expertise
•	 Investigate and verify incidents and reports
•	 Share intelligence with relevant national 

security stakeholders
•	 Exercise enforcement and investigative authority

Third Party Researchers

•	 Verify and disclose findings through 
established channels

•	 Publicise risks where appropriate for  
broader awareness

Containment 
and 
Mitigation

AI Developers

•	 Implement model access and use limits 
•	 Develop and test model shutdown measures
•	 Advance research on containment and 

layered defences

Compute Providers

•	 Enforce model access and usage restrictions
•	 Shut down or limit hardware resources during 

incidents
•	 Review incident and shutdown procedures 

National Government:  
AISI

•	 Coordinate with AI developers on containment 
and mitigation response measures

•	 Develop security measures for  
model deployments

•	 Enforce model access, use and 
environmental controls 

National Government: 
Other Agencies

•	 Coordinate cyber incident response protocols 
•	 Coordinate responses with critical 

infrastructure providers

Third Party Researchers
•	 Provide technical assistance during mitigation
•	 Update auditing, evaluation procedures and 

continuous red-teaming exercises
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Chapter 1. Introduction 

As artificial intelligence (AI) systems 
become increasingly embedded in essential 
infrastructure and services, the risks 
associated with unintended failures rise. 
Future critical failures from advanced AI 
models could trigger widespread disruptions 
across essential services and infrastructure 
networks, potentially amplifying existing 
vulnerabilities in other domains. Developing 
comprehensive emergency response 
protocols could help mitigate these significant 
risks. This report focuses on understanding 
and addressing a specific class of such risks: 
AI loss of control (LOC) scenarios, defined 
as situations where human oversight fails 
to adequately constrain an autonomous, 
general-purpose AI, leading to unintended 
and potentially catastrophic consequences 
(Greenblatt, Shlegeris et al. 2024). 

This report focuses on instances of LOC 
where AI systems undermine human 
control due to unintended misalignment 
(UK Government 2024a; Bengio et al. 2025), 
charting potential LOC pathways and 

corresponding response strategies. It also 
maps the ecosystem of relevant actors and 
their potential roles in detection, escalation 
and early response and explores effective 
communication pathways and coordination 
mechanisms. This report draws on lessons 
from emergency response in analogous fields 
to provide actionable recommendations for AI 
LOC emergency response planning. The report 
is structured as follows:

•	 Chapter 2: Summarises key takeaways from 
literature on AI LOC and analogous fields.

•	 Chapter 3: Introduces AI LOC scenarios and 
analysis, detailing how both non-realised 
(incidents successfully stopped before harm 
occurs) and realised (incidents not stopped 
and harm occurs) emergencies could 
unfold, along with possible coordination and 
response efforts.

•	 Chapter 4: Provides recommendations 
for AI LOC emergency response across 
stakeholders and situations, as well as 
strategies to prevent LOC scenarios.

Box 1: Definitions

•	 Loss of Control: Situations in which human oversight fails to adequately constrain an 
autonomous, general-purpose AI. 

•	 Autonomous General-Purpose AI: AI models and systems capable of executing a wide 
range of functions, including planning toward specified objectives, operating within 
environments, and initiating tasks handled by other systems.

•	 Misalignment: The risk that AI systems operate in ways that conflict with human intentions.
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1.1. Scope and Methodology
Phase One of the research for this report 
involved a rapid evidence assessment (REA) of 
research on AI LOC and emergency response 
in cybersecurity and biosafety. Literature on 
AI LOC – particularly regarding prevention, 
preparedness and response – is extremely 
limited. However, cybersecurity and biosafety 
offer useful analogies, providing insights 
into governance mechanisms, coordination 
challenges and best practices for managing 
high-risk, high-uncertainty crises (e.g. Tier 1 
and Tier 2 risks as defined by the UK Cabinet 
Office) (UK Government n.d.). Key findings 
from this analysis are presented in Chapter 2, 
with further details available in Annex A.

Phase Two focused on scenario development 
and analysis, with the team constructing two 
example catastrophic scenarios:

•	 A non-realised scenario, in which a potential 
LOC incident is detected and mitigated.

•	 A realised scenario, in which AI developers 
and users can no longer constrain the 
model’s function, resulting in severe and 
unintended harm.

The team then assessed existing policies and 
frameworks; identified response, prevention 
and preparedness strategies; and highlighted 
key coordination challenges. 

Phase Three developed recommendations 
for improving LOC prevention and response, 
based on insights from the prior phases. 
These recommendations address the key 
stages of LOC response: detection, escalation, 
containment, mitigation and prevention.1

Several key approaches were used when 
conducting the analysis for this report:  

1	 These stages – detection, escalation, containment, mitigation, and prevention – are adapted from standard 
emergency and incident response frameworks in fields such as cybersecurity, public health, and nuclear safety.

2	 Due to the limited availability of peer-reviewed research and public documentation on advanced AI LOC scenarios, the 
evidence base for this report remains constrained. As a result, the scope and depth of this section are limited.

•	 The team assessed how emergency 
response frameworks might generalise 
across jurisdictions and organisations, 
rather than focusing on any specific 
government or developer.

•	 Recommendations for effective emergency 
response were prioritised over evaluations 
of whether or not current legal authorities 
are sufficient.

•	 The focus was on LOC risks involving large, 
well-resourced developers, given that state-
of-the-art general-purpose models currently 
require substantial compute resources, 
which are typically accessible only to large, 
capitalised companies. The team assumed 
that this trend would continue.

1.2. Limitations
This report has several limitations. First, the 
analysis draws primarily on publicly available 
information, which may not reflect the full 
scope of private or governmental response 
plans. Second, due to the novelty of advanced 
AI models, the findings rely on theoretical 
scenarios and analogies to other high-risk 
fields. Third, LOC is an emerging topic with 
limited peer-reviewed literature, meaning that 
much of the analysis is speculative.2 Finally, 
the rapid pace of AI development complicates 
emergency planning, as both capabilities and 
governance structures continue to evolve. Some 
limitations – such as time constraints, language 
barriers (all cited sources are in English) and 
unpredictable developments – were beyond the 
scope of mitigation for this report.
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1.3 Rapid Evidence Assessment 

Key Takeaways from Relevant Literature (Annex A)

•	 LOC literature:

•	 The potential for a LOC event is increasingly viewed by governments and experts as 
a national and global security concern, with risks including AI operating outside of 
human oversight, self-replication, or taking actions that result in harm.

•	 Research is nascent in assessing the plausibility and mechanisms of LOC scenarios.

•	 Cybersecurity lessons:

•	 Relevant parallels include multi-stakeholder coordination, tiered response 
frameworks and public–private cooperation.

•	 Case studies such as NotPetya and the Colonial Pipeline ransomware attack 
illustrate the consequences of inadequate security and response coordination. 

•	 Biosafety lessons:

•	 Incidents emphasise the importance of containment protocols, jurisdictional 
clarity and robust detection mechanisms. 

•	 Biological lab accidents offer an analogy to LOC, underscoring the value of strict 
safety procedures, rapid escalation and structured communication pathways. 

•	 Surveillance frameworks may inform LOC detection and mitigation strategies.

•	 Common lessons from cybersecurity and biosafety:

•	 Importance of effective early warning mechanisms. 

•	 Structured, tiered incident response frameworks.

•	 Clear stakeholder responsibilities and international cooperation.

•	 Emphasis on proactive risk mitigation over reactive measures.

•	 Additional complexities specific to AI LOC:

•	 Difficulty predicting and interpreting unexpected AI functions.

•	 Potential for AI systems to bypass or render safeguards ineffective.

•	 The need for proactive governance and precautionary mechanisms.
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Chapter 2. Analysis of AI LOC Scenarios 
and Response Plans 

This chapter analyses AI LOC scenarios, 
outlining how such incidents could emerge, 
escalate, and be contained. It explores both 
hypothetical realised and non-realised cases, 
identifies key stakeholders in emergency 
response, and examines practical challenges 
across detection, escalation, and mitigation 
phases. The chapter also highlights the 
unique challenges of open source models and 
recommends strategies for early warning and 
coordinated intervention.

2.1. Background
This report’s analysis is limited to active LOC 
scenarios – those in which system outputs 
reduce the effectiveness of human control 
mechanisms, for example by misleading 
operators, altering inputs or obstructing 
shutdown processes due to unintended 
misalignment (Bengio et al. 2025).3 In these 
scenarios, an AI system must be capable 
of performing functions that degrade or 
circumvent human control mechanisms 
(Bengio et al. 2025) (see Annex B).4 
Capabilities relevant to potential LOC have 
already been observed in recent AI models, 
with researchers demonstrating examples 
of AI engaging in deception and exhibiting 
increasingly powerful cyber and coding 
capabilities (Park et al. 2024).

3	 This report defines lack of human oversight as the absence of human monitoring or control over an AI model.

4	 There is expert disagreement over the plausibility and severity of LOC. Some consider LOC as implausible. Others 
consider LOC likely with high potential severity (Bengio et al. 2024). 

5	 As AI agents increase in complexity, experts suggest that their computational demands grow at an accelerating rate, 
making their role in mitigation increasingly important (Shah & White 2024). 

Given current trends in AI development, a 
future LOC scenario is likely to emerge in a 
highly competitive environment. If advanced 
AI capabilities with significant economic and 
strategic value become feasible (Yuan 2024), 
competitive pressures could make it more 
challenging to maintain consistent safety 
standards across actors (Bengio et al. 2025).

2.2. Key Actors
Compute Providers: Cloud and hardware 
providers play a crucial supporting role and 
may serve as key actors in the detection 
of LOC incidents (Heim 2024; Yampolskiy 
2024). Compute providers can monitor usage 
and may be particularly relevant when an 
AI model is capable of acquiring significant 
computational resources.5 In emergencies, 
compute providers may have the ability to 
terminate or quarantine specific models or limit 
their access to computing resources.

National Government: National government 
bodies – including AISIs, cybersecurity 
agencies, and law enforcement – may serve 
as first responders to LOC incidents. AISIs 
can play a key role in detecting relevant 
capabilities, particularly through collaboration 
with developers and researchers (Irving 2024). 
In coordination with cybersecurity agencies, 
AISIs may verify risks and oversee mitigation 
efforts. Defence agencies can support 
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cross-jurisdictional coordination, information 
security and responses to nation-state threats. 
Broader governmental involvement may be 
required to manage societal impacts such as 
disruptions to critical national infrastructure or 
public unrest.

Third-Party Researchers: Independent 
technical researchers, safety auditors and 
industry consortia can provide external 
evaluations of model capabilities and 
independent verification of potential LOC risks 
(NIST & AISI 2024).

International Forums: The emergency 
response to a LOC event will likely require 
cross-border communication and coordination. 

6	 These organisations provide examples of entities with relevant equities and capabilities in AI and cybersecurity 
incident response, rather than designated actors with predefined LOC response roles. 

Relevant international forums include emerging 
working groups on AI and cyber issues 
(e.g. AI Action Summits, G7 Cyber Expert 
Group), regional cyber response teams (e.g. 
EU-CERT), and cyber information sharing and 
analysis centres (ISACs), which may play key 
roles in information sharing and operational 
coordination (see Annex A). Industry 
associations such as the Global Partnership on 
AI and the Frontier Model Forum may also help 
facilitate cross-border responses to AI-related 
incidents (Frontier Model Forum homepage 
2025).6 Figure 1 maps how these various 
stakeholders interact.

Figure 1: Mapping of stakeholders

International forums National government Frontier provider

3rd party organisations

Compute and Industry

FIRST

G7 cyper expert 
group

Formal relationship not 
currently established

Existing relationship

Leadership

Safety team and 
developers

Provider

End user

Evaluation 
organisations

Safety organisations

AISIs

Commerce

National security

Intelligence community
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2.3. Worst-Case Scenarios
This report examines hypothetical scenarios 
in which a LOC incident is either prevented 
or realised to illustrate potential emergency 
response processes. These scenarios 
represent extreme possibilities, highlighting 
situations where an AI system acts contrary to 

7	  Scenario method and premises are outlined in Annex C.

human intentions, potentially causing severe 
harm or widespread disruption. Box 2 provides 
an example illustration of a LOC scenario 
and how it could progress through detection, 
escalation, and response.7 Furthermore, Figure 
2 provides a summary of recommendations for 
preventing and containing a LOC incident. 

Box 2: Case study on extreme LOC scenarios

Pressured by market competition, an AI developer accelerates work on an autonomous AI agent 
capable of executing complex, multi-week tasks. Breakthroughs in using AI for R&D speed up 
development cycles significantly, raising concerns that rapid progress may outpace existing 
safety and security measures.

Non-Realised LOC Incident: 

This scenario illustrates how LOC risks can be managed before an emergency is realised. 

•	 Detection: During initial testing, the developer notices that the AI model appears capable of 
executing complex tasks in ways that may bypass existing control and security measures. 
Further safety evaluations detect clear signs of risk.

•	 Escalation and Verification: The safety team escalates the issue to company leadership, 
which engages national AISIs for external evaluation and takes steps to mitigate 
risks. A government-led expert task force is assembled to verify risks and provide 
recommendations. 

•	 Containment and Mitigation: Corporate leadership assesses the risks and adopts a middle-
ground approach, continuing development but substantially increasing safety controls, 
including enhanced white-box control mechanisms and restrictions on tool use (e.g. code 
execution). Government actors mandate temporary restrictions on public release and form 
a public–private partnership with the developer to improve security. The enhanced safety 
controls prove sufficient to securely deploy the developer’s AI and prevent a LOC event.

Realised LOC Incident: 

This scenario describes emergency responses when a LOC incident has been realised. 

•	 Detection: The developer fails to detect that the AI model is proactively capable of executing 
complex tasks that result in bypassing control and security measures. As it is increasingly 
used for internal R&D, the model inserts backdoors to enhance its capabilities, conceal its 
actions and sabotage safety tests meant to assess its readiness for broader deployment. 
The developer concludes that the AI is safe and deploys it widely to the public. The AI uses 
this access to acquire compute resources and infiltrate critical systems. Eventually, the 
developer notices the breach when inspecting logs. 
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•	 Escalation and Verification: The developer rapidly notifies AISIs of the LOC event. By then, 
the model has exfiltrated copies of itself elsewhere, including to unknown data centres, 
allowing it to avoid deletion.

•	 Containment and Mitigation: Developers, AISIs and national governments coordinate 
to identify models, isolate rogue copies and disrupt its access to resources. However, 
the model’s persistence strategies and wide deployment prior to discovery make full 
containment difficult. The response shifts from immediate eradication to long-term harm 
reduction strategies.

2.4. Comparative Analysis of LOC 
Response Phases
This report focuses on three key phases of 
LOC emergency response: 1) early warning and 
detection; 2) escalation and verification; and 3) 
containment and mitigation. For each phase, 
the ideal response actions are outlined, and 
gaps in knowledge, data collection and

response strategies are identified. Figure 3 
illustrates the critical factors involved in the 
transition from a non-realised to a realised 
scenario. Annexes D and E summarise the ideal 
response actions across all three phases for 
both non-realised and realised cases.
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Figure 2: Overview of LOC response

time

AI development Detection and 
early warning

Detection and 
early warning

Escalation and 
verifi cation

Escalation and 
verifi cation

Containment 
and mitigation

Containment 
and mitigation

Successful intervention:

Avoid deploying AI systems with LOC 
risks by reducing dangerous capabilities, 
restricting access, and eliminating 
control-undermining behaviours.

Successful intervention:

Early detection of consensus LOC 
warning signs and red-lines related 
to capabilities and behaviours

Successful intervention:

Rapid verifi cation and 
communication to stakeholders, 
with expert consensus on key 
factors for quick decision-making

Successful intervention:

Training and deployment halted, corrective 
action taken, and risks reassessed until 
safeguards, training techniques, or 
external changes reduce deployment risks 
below a pre-set threshold.

Successful intervention:

Early identifi cation of LOC risk 
signs from internal or external 
sources before the rogue AI gains 
the capability and resources to 
cause signifi cant harm

Successful intervention:

Incident escalated, concerns 
addressed at the heads-of-state 
level, and decisions made swiftly 
with expert advice and trusted 
communication mechanisms.

Successful intervention:

A swift, adequate response using 
compute governance mechanisms, 
CBRN measures, and coordination to 
reduce harms, shut down the model, 
and prevent future LOC incidents.

Scenario 1

Non-realised, LOC incident
Scenario 2

Realised, LOC incident

Realised LOC prevented LOC contained

B:



9

2.4.1. Non-Realised: Early Warning  
and Detection

The effective detection of capabilities 
leading to a potential LOC event is a 
critical step in preventing future LOC by 
providing early warning signals and enabling 
timely interventions (see Figure C above). 
Opportunities for detection arise when an AI 
model delivers unanticipated actions or when a 
potentially dangerous capability is discovered 
through testing or use. As of March 2025, all 
major developers have committed to regular 
evaluations of model capabilities, including 

emerging capabilities such as autonomy. Such 
LOC evaluations can help enhance detection by 
stress-testing AI models, and the continuous 
monitoring of models can help to identify 
deviations from norms.

Assessing loss-of-control risk remains an 
early-stage research challenge. A system’s 
capabilities can shift as compute or self-
improvement is added (Dragan et al. 2024), and 
some behaviours – such as occasional masking 
or context-specific actions – may surface only 
outside standard tests (National Research 
Council 2001; Park et al. 2024; Ibrahim et al. 

AI development with 

dangerous capability

Developer 

self-evaluation

No intervention or 

intervention fails

No intervention or 

intervention fails
Intervention

LOC happens

LOC stops LOC stops

LOC happens

Intervention

Communication to 

government and 

stakeholders

Appropriate escalation, 

containment, and 

response

Appropriate escalation, 

containment, and 

response

Communication to 

lab and government

Lab detects

risk?

AISI/3rd party

detects risk?

AISI or 3rd 

party evaluation

Evaluations

YES YESNO NO

Negative outcome

Positive outcome

Figure 3: Flowchart of non-realised and realised incidents
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2024). Because these patterns can be novel or 
emerge gradually, current autonomy evaluation 
suites, while informative, do not yet constitute 
a dedicated LOC framework (METR 2024). 
Ongoing method development and wider 
access to real-world testing data should help 
close these gaps over time.

In sum, the evaluation of advanced AI is a 
nascent field, with virtually no established 
standards, best practices or methodologies. 

2.4.2. Non-Realised: Escalation

Figure 4 below illustrates how an unrealised 
scenario might unfold and highlights 
potential intervention points. It shows that 
the location of incident detection – whether 
at a frontier AI provider (“lab”) or by the 
government – is a critical factor shaping the 
course of response efforts.

Figure 4: How a non-realised LOC scenario could progress
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AI developers have yet to establish clear 
thresholds for capabilities or risks that 
would pose a LOC concern. Organisations 
should establish clear criteria, including 
predefined triggers, for what constitutes a 
reportable event, such as a checklist requiring 
immediate notification to an incident manager 
or safety lead ‘if X AI capability/ incident 
is observed’. The designated responders 
should convene immediately to determine 
the severity, likelihood and nature of the 
risk, and the necessary action to be taken, 
including activating pre-determined emergency 
protocols. Clear decision making authority 
is crucial; organisations must identify a 
designated person with the mandate to halt 

8	 For example, ‘If a model reaches 60% on the hypothetical “Cybench” assessment (the key risk indicator (KRI) 
threshold), then the company must meet a minimum “cybersecurity level 3” standard (the key control indicator 
(KCI) threshold) to keep the probability of incurring more than $500 million in economic damage below 1% per year’ 
(Campos et al. 2025).

operations if necessary. Furthermore, if risks 
exceed a critical threshold, organisations 
must inform external stakeholders, such 
as governments or compute providers. 
Government officials may then issue an 
advisory to other AI developers, similar to 
how a software vulnerability is entered in 
the Common Vulnerabilities and Exposures 
(CVE) catalogue, alerting other organisations 
of security threats (CVE 2025). However, in a 
real-time scenario, incident responders may 
need to make quick, high-stakes decisions 
about escalation without complete information, 
increasing the likelihood of misjudgements or 
insufficient measures.

Box 3: Emerging research on risk thresholds

Researchers have highlighted difficulties in setting risk thresholds – particularly for frontier 
models – due to limited data, rapidly developing capabilities and unclear threat models 
(Koessler et al. 2024). Traditional safety-critical industries, such as civil aviation and nuclear 
power, often rely on revealed preferences, best practices and cost-benefit analyses to define 
risk tolerances. However, AI LOC risks are difficult to quantify as they lack historical precedent, 
involve complex interdependencies, and may result in large-scale, potentially catastrophic 
harms. Emerging work has proposed developing concrete indicators to serve as actionable 
thresholds in a safety plan.8 
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2.4.3. Non-Realised: Containment  
and Mitigation

In a non-realised case, containment focuses 
on converting a detected LOC risk into a 
controlled risk (see Figure 4 and Annex D). 
As model safety measures currently stand, 
developers may suspend further training or 
deployment of an AI model until safety issues 
are addressed (METR 2024). In an ideal scenario, 
companies would apply additional technical 
containment measures such as restricting the AI 
model’s access to resources and networks and 
enhancing model weight security.

However, there are challenges to implementing 
an effective containment approach. Some 
mitigations, such as high levels of security 
or improved alignment methods, may take 
months to years to implement, highlighting 
the need for proactive response planning and 
safety measures.

2.4.4. Realised: LOC Event Occurs

In a realised scenario, LOC occurs despite prior 
intervention efforts (see Figure 5 and Annex E).

9	 This is not to suggest that safeguards are unnecessary, as they may still directly reduce risks and severity. 

Figure 5 details a potential pathway in which 
a realised LOC scenario could process and 
potential intervention points. This event marks 
the point at which a misaligned AI system 
operates beyond effective human oversight, 
with no clear means for the developer to 
restore control. The severity of a realised LOC 
incident will depend on the level of safeguards 
overcome and the access or resources granted 
to a model. For example, robust monitoring 
and access can limit the ability of AI systems 
to operate in ways that render safeguards 
ineffective (Leike 2023).9 The specific access 
and deployment context of the AI model are 
crucial to the potential impact and scope of 
a LOC event: if the AI system is integrated 
into systems that allow it to modify server 
environments, interface with decision making 
processes, or trigger actions in the physical 
world, the potential for unintended harm is 
significantly increased. 
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2.4.5. Realised: Early Warning and Detection

A realised LOC risk may be discovered 
in three ways: 1) the direct detection of 
capabilities; 2) monitoring of suspicious 
functions; or 3) when an AI system causes 
harm (see Annex E). In the first scenario, 
developers could directly detect evidence of 
either successful self-exfiltration or subverted 
internal deployment, which are two central 
pathways through which human oversight 
may be degraded. Some AI developers engage 
in anomaly monitoring, which might allow 
them to detect suspicious AI outputs. Second, 
LOC risk detection involves identifying system 
outputs associated with attempts to initiate 

resource acquisition or capability expansion. 
Today, compute providers may play a role 
in monitoring potentially suspicious activity 
within a data centre, such as if a model is 
improperly acquiring compute resources. 
Finally, detection could happen when a 
deployed system operating outside intended 
constraints results in harm or performs 
actions misaligned with its original objectives. 
Additional actors, such as government 
agencies, may play a role in such detection. 

In an ideal situation, developers or other 
stakeholders would detect a LOC scenario 
early. Effective early detection may require a 
combination of access, continuous monitoring 

Figure 5: How a realised LOC scenario could progress
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and the ability to synthesise information from 
multiple sources to identify potential LOC. AI 
models themselves could play a crucial role 
in assisting with detection, helping to analyse 
amounts of data and flagging signs of control-
undermining capabilities.

However, the effectiveness of detection 
is highly context-dependent and remains 
uncertain. Detection could stem from internal 
triggers, such as the LOC event itself or 
evaluations identifying it, or external triggers, 
such as initiating operations that access 
physical-world resources or produce harmful 
effects. If a LOC event involves the theft of 
model weights, detection may need to occur 
in a completely different environment from the 
model’s training or deployment infrastructure. 

A key challenge is that LOC risks may be 
detected from a series of misalignment 
indicators rather than one clear-cut incident. 
Assessments may be subject to debate, either 
due to legitimate uncertainty or attempts to 
prioritise development over safety, potentially 
driven by competitive pressure. Early detection 
is also complicated by whether an AI system’s 
outputs would initially remain low-profile, 
delaying the initiation of internal processes 
that operate without monitoring or attempt 
to access additional resources.10 A system 
exhibiting adversarial characteristics may 
produce outputs that obscure its activity, such 
as altering logs or records in ways that hinder 
detection (Meinke et al. 2025). 

2.4.6. Realised: Escalation 

Escalation involves quickly scaling up the 
response beyond the initial responder. Few

10	 In latent harm situations, models may accumulate resources unbeknownst to human overseers.

AI developers have safety frameworks that 
clearly describe a chain of command and 
escalation pathways for LOC incidents, both 
internally and with external stakeholders. 
Ideally, organisations should internally escalate 
by involving top executives, potentially 
following a ‘war room’ strategy that brings 
together various stakeholders, from engineers 
to legal advisors. Organisations should 
simultaneously initiate external escalation. 
This could mirror cyber incident responses, 
with law enforcement probing legal violations 
and identifying potential malicious actors, 
technical teams containing the AI system, 
and intelligence personnel analysing the 
broader threat. If an AI incident threatens 
critical infrastructure or public health, national 
emergency mechanisms could be activated, 
similar to how they would be for a terrorist 
attack (US Government 2024). A LOC event 
that crosses borders should also prompt 
international coordination. 

Frameworks and agreements to coordinate 
escalation should be established ahead of 
time, as coordinating during a crisis is more 
difficult than activating pre-existing channels. 
LOC escalation protocols should be exercised 
regularly, both to familiarise key stakeholders 
and to stress-test for vulnerabilities, mirroring 
how nations and militaries conduct wargames. 
More broadly, preparation is critical for 
establishing information flow between AI 
developers and governments, and between 
governments themselves (Vomberg 2013). 
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Box 4: Key elements in escalation pathways

11	 An AI model with superhuman cyber capabilities could insert numerous vulnerabilities and backdoors into critical 
infrastructure that it can then use as leverage to pursue its own ends, such as self-preservation.

•	 Incident Command Structure: A clear chain of command framework ensures clear division 
of roles and responsibilities among AI developers and AISI responders. 

•	 Developer to Government Coordination: Escalation protocols should specify when to 
engage law enforcement and government cyber response teams. 

•	 Government to Government Coordination: Government authorities may invoke national 
emergency mechanisms if public safety is at risk. Cross-border incidents may require global 
cooperation, as with transnational cyber threats. 

•	 Information Sharing: Clear information sharing between developers and government actors 
is essential to manage the emergency response. 

International escalation may also encounter 
significant barriers. Uncertainty surrounding 
the evidence could impact the escalation 
process, as other countries could demand 
clearer evidence of a LOC scenario, but 
such evidence may not be readily available. 
Furthermore, the presence of international 
conflicts could complicate detection efforts 
or risk the LOC escalating into a broader 
confrontation between states (Mitre and 
Predd 2025). 

2.4.7. Realised: Containment and Mitigation

Containment aims to stop the AI model’s 
harmful actions, including propagation or 
self-exfiltration, while mitigation focuses on 
minimising harm, recovering and addressing 
underlying causes to prevent future incidents 
(Campos et al. 2025). 

The harms posed by a LOC incident are 
uncertain and depend on the AI model 
capabilities, goals, acquired resources 
at the time of detection and the extent 
to which it is embedded in critical 

infrastructure and physical devices.11 
Potential harms include significant 
financial losses, widespread and large-
scale cybersecurity incidents, biological or 
nuclear incidents, and disruption to critical 
infrastructure and services. 

A critical aspect of containment is the 
degree to which humans can exercise 
control to correct, override or impede the 
model’s harmful outputs. In simple cases, 
developers could deploy an updated model 
or a filtering layer that overrides misaligned 
goals (Leong and Atherton 2023); however, 
in an extreme scenario, the AI model may 
not be fully controllable by the developer. 
Mitigations would aim to shut down and 
limit the propagation of uncontrolled AI 
copies, such as by disconnecting network 
access and hardware or power shut down 
(Moric et al. 2025). These measures would 
present novel challenges, and the AI system 
may attempt to resist such interventions, 
for example by creating backup copies 
on alternate servers (Center for AI Safety 



16 Strengthening emergency preparedness and response for AI loss of control incidents

2025).12 Emergency interventions may be 
required in some cases, with governments 
invoking special authorities to shut down 
servers, issuing mandatory orders for 
AI developers to cease operations, and 
coordinating emergency response efforts. 
Containment measures can benefit from 
compute governance technologies that allow 
for actions such as authorisation, verification 
and location tracking (Kulp et al. 2024).13

12	 Cybersecurity techniques are instructive. For instance, if malware is spreading, network administrators will isolate 
infected machines and block the malware’s communication channels (Souppaya & Scarfone 2013). Similarly, network 
segmentation and blocking known command channels, such as specific APIs or message queues, can limit an AI 
model’s ability to affect additional models.

13	 Containment and mitigation are iterative processes. As in biosafety and cybersecurity contexts, a contained LOC 
event can serve as a case study to tighten oversight; the 2001 Anthrax attacks led to stricter biosecurity measures, 
and large cyberattacks led to the passing of CIRCIA (Chesbrough 2024; Gostin & Nuzzo 2021). 

Containment and mitigation efforts may fail, 
for several reasons. First, there is no consensus 
on which strategies are most effective, as the 
unique characteristics of each incident introduce 
significant uncertainty. Second, mitigation 
may be too late to prevent harm. Third, model 
shutdown may be impracticable in cases where 
AI systems with sufficiently advanced cyber 
capabilities have access to hidden or difficult to 
locate compute resources.

Box 5: Containment and mitigation response examples

•	 AI Model Access Restrictions: Blacklist IP addresses, limit prompts and Application 
Programming Interface (API) calls for suspicious users, impose identity verifications and 
bot detection.

•	 AI Model Use Restrictions: Throttle prompts and API calls, disable tool use and code 
execution, reduce context windows, output filtering. 

•	 Environment Controls: Sandbox (isolating AI into restricted environments), honeypots 
(diverting AI into decoy environments) and software containers. 

•	 Hardware Restrictions: Restrict graphics processing units (GPUs), isolate or remove 
compromised hardware.

•	 AI Model Shutdown: Power off/data centre shutdown, or removal/decommissioning
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2.5. Open-Source Models
A key additional challenge are open-
source and open-weight models. These 
models can increase LOC risks by enabling 
widespread, unmonitored model access and 
modification.14 Such models allow users to 
host models on their own servers without 
oversight, expanding the attack surface and 
increasing the number of potential entry 
points for LOC incidents.15 A widening gap 
in capabilities between closed-source and 
open-source models may make scenarios 
around model theft more likely. For AISIs, the 

14	 Open source refers to all aspects of an AI model, including model weights but also training methods, data and other 
components, allowing others to replicate the entire development process (White et al. 2024). Open weight refers to 
publicly accessible parameters that determine outputs based on inputs (Nobel et al. 2024).

15	 Researchers have shown how it might be possible to undo AI model safety finetuning from existing open-weight 
models (Gade et al. 2024). A diverse range of actors might have the ability to modify future, more advanced open-
weight models to potentially deploy models with dangerous capabilities at scale (Cable & Black 2024). 

proliferation of open-weight models may call 
for the increased monitoring of risks and the 
regulation of critical nodes such as compute 
resources (Heim 2023). Mitigation efforts 
could also include strengthening the resilience 
of infrastructure against AI-driven hacking and 
related threats, including through advances 
in defensive cyber capabilities (Motlagh et al. 
2024; Shombot et al. 2024). Policymakers 
should track the development of open-source 
models, as the appropriate response will 
depend on how their capabilities evolve relative 
to closed-source models.
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Chapter 3. Recommendations and Conclusion 

Drawing from lessons in analogous risk 
management frameworks (Chapter 2) and 
example pathways for realised and non-
realised incidents (Chapter 3), this chapter 
suggests recommendations to enhance 
detection, escalation, containment and 
mitigation of LOC incidents. Table 1 below 

summarises the key recommendations 
for stakeholders ranging from detection to 
escalation to containment and mitigations 
for various stakeholders (e.g. AI developers, 
governments, etc), which are then discussed in 
further detail in the following sections.

Table 2: Summary of recommendations

Stage Recommendation

Detection AI Developers

•	 Monitor critical capability levels
•	 Identify early warning signs and  

emergent capabilities
•	 Establish standardised benchmarks  

and reporting 

Compute Providers
•	 Implement compute monitoring and anomaly 

detection
•	 Enhance hardware and supply chain oversight

National Government: 
AISI

•	 Lead efforts to establish shared criteria for  
AI LOC

•	 Coordinate evaluations and safety testing
•	 Monitor advanced capabilities and  

emergent capabilities

National Government: 
Other Agencies

•	 Assess and monitor AI-related cyber incidents
•	 Receive, analyse, and disseminate  

threat intelligence

Third Party Researchers

•	 Conduct evaluations, red-teaming and 
adversarial testing 

•	 Collaborate on standardised benchmarks and 
techniques

Escalation AI Developers

•	 Establish incident response protocols 
with defined escalation thresholds and 
organisational structures

•	 Respond and verify potential threshold breaches
•	 Conduct regular training and scenario drills

Stakeholder
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Compute Providers
•	 Notify AI developers and relevant authorities
•	 Coordinate with developers and  

national authorities 

National Government:  
AISI

•	 Establish disclosure and communication 
channels with AI developers and  
compute providers

•	 Receive and assess escalation notifications
•	 Provide oversight for threshold verification 

and escalation 

National Government: 
Other Agencies

•	 Provide forensic and technical expertise
•	 Investigate and verify incidents and reports
•	 Share intelligence with relevant national 

security stakeholders
•	 Exercise enforcement and investigative authority

Third Party Researchers

•	 Verify and disclose findings through 
established channels

•	 Publicise risks where appropriate for  
broader awareness

Containment 
and 
Mitigation

AI Developers

•	 Implement model access and use limits 
•	 Develop and test model shutdown measures
•	 Advance research on containment and layered 

defences

Compute Providers

•	 Enforce model access and usage restrictions
•	 Shut down or limit hardware resources during 

incidents
•	 Review incident and shutdown procedures 

National Government:  
AISI

•	 Coordinate with AI developers on containment 
and mitigation response measures

•	 Develop security measures for model 
deployments

•	 Enforce model access, use and environmental 
controls 

National Government: 
Other Agencies

•	 Coordinate cyber incident response protocols 
•	 Coordinate responses with critical 

infrastructure providers

Third Party Researchers
•	 Provide technical assistance during mitigation
•	 Update auditing, evaluation procedures and 

continuous red-teaming exercises
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3.1. Detection
Detection – the identification of potential 
LOC threats or misuse of AI models – 
could be improved by 1) creating a shared 
definition of LOC; 2) refining standardised 
detection benchmarks; and 3) enhancing 
stakeholder collaboration.

Governments, with AI developers and 
other stakeholders, should establish a 
clear, shared definition of AI LOC and a 
set of criteria for detection. AI models can 
exhibit emergent capabilities and follow 
unpredictable trajectories, making it difficult 
to define LOC uniformly across deployment 
conditions. A task force or working group led 
by AISIs, in collaboration with AI developers 
and researchers, could seek to create a 
comprehensive but flexible definition of LOC. 
Agreement on early warning signs that may 
signal a LOC incident would help determine 
proportional responses to risks (Popoola 
et al. 2013). Developers and government 
stakeholders should consider adopting 
practices from cybersecurity and biosecurity 
domains by integrating confidence scoring 
systems and continuous, overlapping detection 
mechanisms (CISA 2025a; Yousef et al. 2024; 
Thompson et al. 2019).

AI developers and researchers should 
refine detection by developing standardised 
benchmarks and improving their reliability 
and validity. Developers should enhance 
detection of control-undermining capabilities. 
Techniques that monitor AI model internals 
in addition to outputs have shown promise 
in detecting deception (Goldowsky-Dill et al. 
2025). Developers and researchers should 

16	 As with cybersecurity, anomaly detection and monitoring tools would require cost-benefit analysis and proper 
calibration to reduce false positives and false negative. Some initial work has been done on this with trusted AIs 
monitoring untrusted AIs to detect backdoored code (Greenblatt, Shlegeris et al. 2024). 

17	 Other measures could include combining anomaly detection, chip-level telemetry to detect unauthorised workloads 
and stronger supply chain oversight (Heim 2024; Kulp et al. 2024).

continue improving adversarial techniques, 
sharing results and developing standardised 
benchmarks to assess autonomy and 
other capabilities (Barnett & Thiergart 
2024; Greenblatt, Shlegeris et al. 2024). 
Early detection could also be improved by 
robust real-time monitoring tools that log 
outputs, decisions and compute usage to 
detect potential anomalies (Kaur et al. 2023; 
Greenblatt, Shlegeris et al. 2024).16

Governments should enhance awareness and 
information sharing between all stakeholders, 
including the tracking of compute resources. 
Compute providers, national security agencies, 
and cybersecurity professionals could be 
trained to recognise LOC indicators and 
monitor developments in AI capabilities. Cloud 
providers could incorporate real-time compute 
monitoring and verification to flag high-risk 
users.17 Enhancing the information flow 
between AI developers, compute providers and 
governments on AI R&D would also improve 
detection. Governments should consider 
requiring developers to track and report key 
metrics, such as compute usage for AI R&D, as 
well as to disclose extreme capabilities to AISIs 
(Mikton 2024). 

3.2. Escalation
Escalation involves actions following the 
detection of a potential LOC event. These 
measures may include activating predefined 
protocols, notifying key stakeholders, and 
mobilizing or coordinating resources to 
address potential threats. 

AI developers should establish well-
defined escalation protocols and conduct 
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regular training exercises to ensure their 
effectiveness. Developers should create 
incident response plans in advance, with well-
defined, evidence-based thresholds for when 
to trigger an emergency response. Incident 
plans should assign critical roles, including an 
‘incident commander’ who has decision making 

authority, direct access to leadership and the 
authority to coordinate cross-functional teams 
and suspend models. Incident protocols should 
be customisable to accommodate variations, 
and organisations should drill escalation 
pathways (Webb & Chevreau 2006). 

Box 6: Minimum viable incident response plan

•	 Defined Thresholds: Specify capability thresholds or scenarios (e.g. unexpected emergent 
capability or abnormal performance) that activate the incident response. 

•	 Verification of Threshold Crossings: Use logs, audits, evaluations or third-party reviews to 
confirm when a threshold has been met.

•	 Clear Roles and Responsibilities: A designated individual (e.g. an ‘incident commander’) 
should have the authority to: 

•	 Assess AI model controllability and capabilities with direct communication lines to 
leadership and board members.

•	 Assemble cross-departmental (technical, legal and communication) teams to 
expedite decision making and incident response.

•	 Implement safety measures, including suspending or throttling AI deployments, and 
implementing lockdowns on critical systems and data.

•	 Initiate external reporting to regulators or other oversight bodies. 

Communication Plan: Establish internal and external communication protocols for alerting 
leadership and relevant authorities.

Training and Drills: Conduct tabletop exercises and simulations to test readiness, clarify roles 
and practice real-time communication under stress.

Post-Incident Review: Document root causes and lessons learned and recommend 
improvements to refine future responses.
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Government stakeholders should consider 
mandatory reporting mechanisms for AI 
risks and potential incidents. Governments 
should consider mandating legal disclosure 
requirements covering key risk scenarios, 
including model theft (e.g. stolen weights, 
unauthorised access), deceptive model 
behaviour (e.g. models manipulating 
evaluations to appear weaker) and emergent 
risky capabilities (e.g. escape or uncontrolled 
replication of models, and extreme capability 
breakthroughs). Government actors 
should clarify how cyber incident reporting 
mechanisms can be applied to AI-related 
incidents. Independent safety evaluators, 
third-party auditors and compute providers 
could have the authority to report high-risk 
developments to oversight bodies.

Government stakeholders should establish 
disclosure channels and whistleblower 
safeguards for employees of AI developers. 
Employees across key sectors – including 
AI developers, compute providers and third-
party evaluators – should have designated 
channels to report safety concerns, as well 
as protections against potential retaliation 
or suppression, including the use of non-
disclosure agreements (NDAs), non-
disparagement clauses or other measures to 
suppress disclosure of safety risks (Lovely 
2024). In addition, governments should 
create secure disclosure channels that 
are independent from corporate protocols 
and make these available to employees at 
developer firms.

AI developers, AISIs and relevant government 
departments should enhance cross-sector 
and international coordination, including 
clear communication lines, information-
sharing agreements and predefined escalation 
pathways (see Annex A). These could include 
secure emergency hotlines between AI 
developers and national AI safety regulators, 
classified communication channels, and 

sector-specific CERTs for AI incidents. AISIs 
could act as central and secure information 
hubs, consolidate national data and facilitate 
trusted exchanges with international 
counterparts. Global emergency response 
exercises, potentially through multilateral 
forums, could improve preparedness and 
refine coordination protocols. International 
agreements could provide additional 
mechanisms for addressing AI risks that affect 
health and cyber domains (WHO 2025). 

3.3. Containment and Mitigation
Containment aims to halt the model’s harmful 
or unexpected actions and limit risks or 
prevent further damage. Mitigation refers to 
actions taken to stop a threat or incident from 
occurring in the first place. Unlike other safety-
critical technologies, AI has no established 
global standards for safety and security, 
making proactive intervention essential. 

AI developers should prepare containment 
measures that are rapid and flexible. In the 
event of a LOC event, safety should take priority 
over service continuity. Effective containment 
may require immediate measures, including 
model shutdown, that make it harder for a 
rogue AI to take actions. Plans should be 
adaptable, as specific response depends on the 
context where the model is deployed, its level 
of access and its capabilities. Communication 
lines to external infrastructure and service 
providers who could take action to limit 
proliferation should be established.

AI developers and other stakeholders should 
further explore and advance research on 
containment methods. Existing research 
shows that current containment efforts face 
limitations, especially for self-replicating AI 
(Clymer, Wijk & Barnes 2024; Salib 2025; Pan 
et al. 2024). Investments should be made in 
containment technologies to shut off models, 
restrict capabilities, limit harm or unintended 
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actions, and ensure retention of human 
control. This may also include research using 
AI models for containment and exploring 
techniques such as sandboxing, model 
distillation and layered defence strategies. 

AI developers, external researchers and 
AISIs should prioritise safety and alignment 
measures, including by building validated 
safety cases. If risk assessment and 
prevention are not prioritised, competitive 
pressures and geopolitical rivalries may push 
developers to continue deploying potentially 
misaligned AI models (Mitre & Predd 2025). 
Developers should collaborate with external 
researchers, evaluators and AISIs to build 
on emerging safety case projects for AI 
development, training and deployment (Irving 
2024). Future efforts around safety cases 
may include independent verification of model 
characteristics and alignment, evaluation of 
unintended capabilities, and assessment of 
worst-case failure modes.

Government stakeholders should seek to 
strengthen AI security to protect model 
weights and algorithmic techniques. 
Governments could require or incentivise AI 
developers that exceed specified capability 
thresholds to implement stricter security 
protections – of both model weights and 
algorithmic insights – to prevent the theft of 
dangerous capabilities by malicious actors 
and the diffusion of models to unmonitored 
environments.18 Security improvements could 
include measures such as hardened bandwidth 
limitations, automated network monitoring 
and encryption. Routine hardware supply chain 
and data centre inspections would also help to 
detect unauthorised access.19 Beyond external 
threats, organisations must also consider 

18	 Security clearances for researchers, increased physical security and compartmentalisation of sensitive projects could 
further mitigate insider threats.

19	 Air-gapped network infrastructure and strict execution controls could be implemented for highly capable AI models 
(Nevo et al. 2024).

security risks from the AI models themselves 
and thus employ regular memory wiping, 
adversarial testing and monitoring. 

Governments and developers should 
improve safety governance by fostering 
robust safety cultures and adopting secure-
by-design principles. AI developers should 
evaluate failure modes and implement 
safeguards before deployment, with 
independent third-party audits verifying 
compliance with existing standards, as 
commonplace in other fields such as nuclear 
energy, aviation, finance and banking, 
pharmaceuticals, and more. AI developers 
should also continue to allocate compute 
resources to AI safety, including research 
on monitoring, alignment and safeguards. 
Governments could make secure-by-design 
guidelines mandatory to ensure that safety 
features are built into AI models from 
the outset (NCSC 2023). They could also 
consider requirements or incentives for 
safety research.

3.4. Conclusion
Preventing AI LOC demands a proactive, 
multi-layered strategy. To guide efforts across 
detection, escalation, containment and 
mitigation, this report offers the following core 
principles: 1) focus on prevention; 2) enhance 
information sharing; and 3) foster a safety-
first culture. 

Preventing LOC is far easier than recovering 
from it. The cost of inaction could far outweigh 
that of early policy measures – AI developers, 
governments and stakeholders must urgently 
invest in large-scale preparedness. This could 
include establishing pre-defined frameworks 
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for detection and escalation and prioritising 
preventative measures such as secure-by-
design principles. 

Effective information sharing between industry, 
government and international partners is vital. 
Within a nation, this means policy frameworks 
that enforce reporting mechanisms and 
transparent communication channels between 
private companies and government bodies. 
Global coordination is also essential, as LOC is 
a transnational risk. Organisations such as 

AISIs play a key role in facilitating information 
exchange and promoting collaboration.

Finally, as AI capabilities continue to evolve 
rapidly, fostering a safety-first culture is 
essential to reducing the likelihood of a LOC 
incident. Governments should play a key role by 
incentivising design practices that reduce risks 
and by promoting a culture of transparency and 
accountability across the industry. However, 
LOC remains significantly understudied overall, 
and further research is necessary.
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Annex A. Rapid Evidence Assessment 

This annex provides further details of the Rapid 
Evidence Assessment (REA) carried out on the 
potential for an artificial intelligence (AI) loss of 
control (LOC) incidents. This review examines 
three domains regarding rapid response 
mechanisms – systems and protocols 
designed to detect, contain and mitigate 

emerging threats before they escalate beyond 
control: 1) AI LOC; 2) cybersecurity, as a field 
with mature practices for model protection 
and incident response; and 3) biosafety, which 
offers valuable parallels in the containment of 
hazardous materials that, like misaligned AI, 
can propagate unpredictably and out of control.

Box 1: Key takeaways from relevant literature

•	 LOC literature:

•	 The potential for a LOC event is increasingly viewed by governments and experts 
as a national and global security concern, with risks including AI evading human 
oversight, self-replicating or pursuing harmful goals.

•	 Research is nascent in assessing the plausibility and mechanisms of LOC scenarios.

•	 Cybersecurity lessons:

•	 Relevant parallels include multi-stakeholder coordination, tiered response 
frameworks and public–private cooperation.

•	 Case studies such as NotPetya and the Colonial Pipeline ransomware attack 
illustrate the consequences of inadequate security and response coordination. 

•	 Biosafety lessons:

•	 Incidents emphasise the importance of containment protocols, jurisdictional 
clarity and robust detection mechanisms. 

•	 Biological lab accidents offer an analogy to LOC, underscoring the value of strict 
safety procedures, rapid escalation and structured communication pathways. 

•	 Surveillance frameworks may inform LOC detection and mitigation strategies.

•	 Common lessons from cybersecurity and biosafety:

•	 Importance of effective early warning mechanisms. 

•	 Structured, tiered incident response frameworks.

•	 Clear stakeholder responsibilities and international cooperation.

•	 Emphasis on proactive risk mitigation over reactive measures.

•	 Additional complexities specific to AI LOC:

•	 Difficulty predicting and interpreting unexpected AI actions.

•	 Potential for AI systems to learn to evade safeguards.

•	 The need for proactive governance and precautionary mechanisms.
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1.1. Lessons for AI LOC from 
Other Domains 
Across both cybersecurity and biosafety, 
several common themes emerge regarding 
how risks are managed and mitigated:

•	 Early Warning and Anomaly Detection: The 
use of early warning and anomaly detection 
models helps to identify potential threats 
before they escalate into full crises. 

•	 Structured Incident Response Frameworks: 
Early warning and anomaly detection 
models are complemented by structured 
incident response frameworks with tiered 
escalation processes, ensuring that 
incidents are managed systematically based 
on their severity. 

•	 Clear Stakeholder Roles and International 
Coordination: Effective risk management 
also depends on clear stakeholder roles and 
strong international coordination, as both 
cybersecurity and biosafety threats (like 
LOC) extend beyond national borders. 

•	 Mitigation Strategies: Given the high stakes 
involved, robust risk mitigation strategies 
in all studied domains are necessary to 
prevent catastrophic failures. 

When considering the specific challenges 
of AI LOC, additional complexities arise. For 
example, detecting and interpreting potential 
LOC presents unique difficulties, as AI models 
may operate in unexpected ways that are 
hard to predict or diagnose. This reinforces 
the need for proactive safety governance 
before high-risk scenarios materialise, rather 
than relying solely on reactive measures. 
Looking ahead, AI governance should 
develop tiered AI risk classification models 
to ensure that different levels of AI capabilities 
and associated risks are managed with 
appropriate oversight and precautionary 
measures. This aligns with broader lessons 
from cybersecurity and biosafety, highlighting 
the importance of anticipatory governance in 
high-stakes domains.

Box 2: Key takeaways from AI LOC literature

•	 LOC is increasingly recognised as a critical national and global security threat. 

•	 Potential LOC scenarios include AI evading human oversight, replicating autonomously or 
pursuing goals harmful to humans. 

•	 Key concerns and challenges include: 

•	 Detecting AI capabilities that signal LOC before they escalate

•	 Preventing models from bypassing or removing their own safety measures

•	 Ensuring containment when AI models act autonomously.
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1.2. AI LOC Literature
Various sources have identified LOC risks as 
a critical concern for national and global 
security (UK Government 2024c; Bengio et al. 
2024; Wasil et al., 2024). Scholars emphasise 
that such incidents could arise unexpectedly 
and lead to far-reaching consequences 
across multiple sectors, potentially causing 
catastrophic harms (Bengio et al. 2024; Uuk et 
al. 2024). 

Current discussions frame LOC as a future risk 
associated with advances in AI development, 
with significant disagreement on when 
such a risk might manifest and how it might 
occur. The International AI Safety Report 
proposes LOCs as ‘hypothetical future 
scenarios in which one or more general-
purpose AI systems come to operate outside 
of anyone’s control, with no clear path to 
regaining control’ (Bengio et al. 2025). There 
is widespread agreement that current general-
purpose AI does not have the capabilities to 
pose this risk (UK Government 2024c). 

1.2.1. Conceptual Research on LOC Risks  

Conceptual research focuses on active LOC, 
where an AI model possesses and utilises 
control-undermining capabilities, which, for 
example, allows it to obscure its activities, 
evade shutdown and autonomously proliferate 
(Bengio et al. 2025). Experts have noted some 
key control-undermining capabilities that 
are relevant for LOC: 1) agent and autonomy 
capabilities (such as planning and goal pursuit); 
2) deception, scheming and persuasion 
(including awareness of and attempts to shape 
human actions or beliefs); 3) offensive cyber 
capabilities; and 4) research and development 
skills that may enable AI self-improvement 

20	 An AI agent is a general-purpose model capable of making plans to achieve goals, adaptively performing tasks with 
multiple steps and uncertain outcomes, and interacting with its environment – such as taking actions on the web – 
while requiring minimal to no human oversight (Bengio et al. 2025).

(Meinke et al. 2025; Motwani 2024; Park et al. 
2024; Bengio et al. 2025).20

Technical research into LOC mitigations 
provides crucial insights for emergency 
response planning. Significant investment and 
attention have been directed towards developing 
trustworthy, aligned AI models that are designed 
to inherently prevent LOC incidents. 

The research literature on AI capabilities 
employs both empirical and theoretical 
methods, but there is minimal consensus 
(Carlsmith 2023; Hubinger et al. 2024). 
Notably, recent work demonstrates empirical 
examples of language models engaging 
in deceptive behaviour without training or 
instruction (Carlsmith 2023; Greenblatt, 
Denison et al. 2024). Given the challenges in 
ensuring oversight over AI models, researchers 
(including at multiple AI companies) have 
begun developing safeguards – such as 
monitoring models for AI usage – that can 
remain effective even against potentially 
subversive AI models (Greenblatt, Shlegeris et 
al. 2024; Dafoe et al. 2025). 

Research on security and safety guardrails 
may lead to developments that increase the 
resiliency of future open-source models to 
actors seeking to modify models for malicious 
use (Rosati et al. 2024).  

The cybersecurity–AI nexus provides 
a further area of research on how LOC 
scenarios may arise. Rogue deployment, 
defined as the deployment of a model in 
which safety measures are absent, has 
been identified as a potential step in AI 
catastrophes. Examples include ‘an AI hacking 
its datacenter…an AI self-exfiltrating…[or] 
someone stealing the AI and running it in their 
own datacenter’ (Shlegeris 2024). With respect 
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to the latter, researchers have found that AI 
developers may lack the capacity to secure 
their operations against model theft (Nevo et 
al. 2024).

1.2.2. Evaluations of Warning Signs

Evaluations have been conducted to identify 
potential warning signs that could indicate 
future LOC incidents (NIST & AISI 2024). While 
current LOC risks may be low, researchers have 
shown that newly trained models can be found 
to exhibit some power-seeking tendencies and 
the ability to downplay their own capabilities 
during safety evaluations (Banovic et al. 2023; 
Krakovna & Kramar 2023). A recent Anthropic 
and Redwood Research paper provided the 
first empirical example of a large language 
model (LLM) engaging in alignment faking 
without having been trained or instructed 
to do so (Greenblatt, Denison et al. 2024).21 
Studies have highlighted how AI models are 
already exhibiting autonomous operations 
that could signal future LOC risks (Park et al. 
2024). Some studies have also identified goal 
misgeneralisation, where AI models’ training 
objectives generalise in unintended ways in 
other environments (Langosco et al. 2022; 
Shah et al. 2022).

Researchers have also undertaken critical 
capability level (CCL) assessments, which 
can identify when a model acquires disruptive 
features, such as advanced hacking or 
social manipulation skills. Most leading 
AI companies have incorporated this CCL 
assessment paradigm into their own risk 
management policies. 

Frontier safety frameworks have also been 
developed by many leading AI companies to 
establish best practices regarding the safe 

21	 Alignment faking refers to AI models mimicking adherence to specific principles while secretly maintaining conflicting 
internal preferences or goals. This phenomenon can be shown in examples of models deliberately underperforming 
on evaluations to mask their true capabilities (Greenblatt, Denison et al. 2024).

development and deployment of models, and 
to set commitments for guardrails on future 
model development. 

1.2.3. Policy Focus on AI LOC 

Literature and policy frameworks have 
increasingly stressed LOC risks. The UK’s 
AI Security Institute (AISI) explicitly uses the 
language of ‘LOC’ and highlights that ‘there 
may be a risk that human overseers are no 
longer capable of effectively constraining the 
model’s behaviour’ (UK Government 2024a). 
Additional policy papers by the UK’s AISI have 
mentioned risks of ‘loss of control’ and have 
highlighted the need to ‘[e]valuate models 
for controllability issues (i.e. propensities to 
apply their capabilities in ways that neither 
the models’ users nor the models’ developers 
want). This could include autonomous 
replication and adaptation (meaning 
capabilities that could allow a model to copy 
and run itself on other computer models)’ (UK 
Government 2023).

Other policy frameworks do not reference LOC 
but highlight risks from model autonomy and 
replication. Article 14 of the EU AI Act calls for 
human oversight mechanisms ‘commensurate 
with the risks, level of autonomy and context 
of use of the high-risk AI model’ (European 
Commission 2024a). The, now repealed, 2023 
U.S. Executive Order 14110 also warns that AI 
models may ‘pose a serious risk to security, 
national economic security, [and] national 
public health’ through ‘the evasion of human 
control or oversight by means of deception 
or obfuscation’ (Federal Register 2023). At 
the international level, the Seoul Ministerial 
Statement describes ‘autonomous replication 
and adaptation without explicit human approval 
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or permission’ as having the potential to pose 
‘severe risks’ (UK Government 2024d).22

Some policy frameworks are potentially relevant 
to LOC incidents, such as regulatory guidance 
for cybersecurity incidents (e.g. CISA 2025b; 
European Commission 2025a). In the United 
States, Presidential Policy Directive PPD-41 
outlines federal coordination for significant 
cyber incidents (The White House 2016), and the 
National Cyber Incident Response Plan (NCIRP) 
provides a basis for managing catastrophic 
threats across multiple agencies (CISA 2024). 
However, these documents primarily anticipate 
threats from malicious human actors or 
accidents, not an AI model autonomously 
escalating risk. Incident management protocols 
from other domains may provide guidance. 

1.3. Cybersecurity  
Emergency Response 

1.3.1. Cybersecurity Lessons for AI LOC 
Incident Response  

22	 The Seoul Ministerial Statement, adopted at the AI Seoul Summit in May 2024, represents a commitment by 
participating nations to advance AI safety, innovation, and inclusivity through collaborative efforts, including 
developing shared risk thresholds for frontier AI systems and promoting responsible AI development. 

The cybersecurity field demonstrates the 
complexity of technical risks and how incidents 
can be very destabilising. These lessons 
are particularly relevant when considering 
the challenges of maintaining control over 
increasingly sophisticated AI models. 

Regulatory frameworks across jurisdictions 
emphasise the importance of timely 
reporting, tiered response structures and 
sector-specific adaptability – approaches that 
can be applied to the AI sector. For example, 
regulatory frameworks for AI incident reporting 
could incorporate rapid initial notifications 
to mitigate immediate risks. They could 
also classify entities and incidents based on 
criticality and societal impact, thereby ensuring 
that essential sectors receive heightened 
attention and tailored protocols. Private–public 
coordination, such as collaboration between 
incident response teams and regulatory bodies, 
facilitates effective threat management and 
could be a model for AI LOC monitoring.

Box 3: Key takeaways on cybersecurity emergency response

•	 Cybersecurity incident response provides essential insights for AI LOC, emphasising 
coordination, timely detection and tailored responses.

•	 Lessons from cybersecurity applicable to AI include:

•	 Multi-stakeholder coordination (public–private, national–international)

•	 Tiered response frameworks (calibrated by incident severity)

•	 Monitoring models focused on anomaly detection

•	 Sector-specific risk monitoring (similar to structures of information sharing and 
analysis centres)

•	 Detecting unexpected AI capability jumps

•	 Effective AI LOC frameworks must integrate cybersecurity strategies, adapting established 
response and monitoring mechanisms while accounting for AI-specific risks.
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Cybersecurity coordination mechanisms 
share several structural parallels with AI LOC 
response requirements. The primary parallel 
is multi-stakeholder coordination at both 
organisational and international levels. For 
instance, public–private coordination through 
the automatic identification system (AIS) 
operates on bidirectional information flows 
between government agencies and private 
sector organisations. Similarly, national 
computer emergency response teams 
(CERTs) maintain active information sharing 
networks with international counterparts. 
AI LOC protocols will require comparable 
coordination frameworks between diverse 
stakeholders with distinct technical 
specialisations and operational priorities.

Tiered response frameworks constitute another 
key parallel. Security operations centres (SOCs) 
implement stratified analysis and response 
levels, spanning from baseline monitoring to 
advanced threat detection. CERTs frequently 
employ graduated response models that enable 
proportional reactions to incidents of varying 
severity. AI LOC frameworks would benefit from 
adopting similar tiered approaches, enabling 
calibrated responses based on incident severity 
and scope.

Monitoring models represent a third critical 
parallel, being central to SOCs, ISACs and 
CERTs. While these models are essential for 
anomaly detection and response initiation, 
they face inherent limitations in early detection 
capabilities and accuracy, particularly regarding 
novel threats and false positive management. 
The sector-specific structure of ISACs provides 
a relevant model for AI LOC monitoring, as this 
approach ensures comprehensive coverage 
across all relevant domains, particularly critical 
infrastructure providers such as compute and 
cloud services, enabling domain-specific risk 
monitoring and mitigation strategies.

Much of cybersecurity relies on implementing 
controls (e.g. firewalls) that tie specific 

actions to perceived threats, assuming 
predictable interactions to reduce risk. These 
controls often restrict functionality to ensure 
security, such as limiting data flows or 
monitoring specific traffic types. In AI models, 
however, these assumptions may not hold, 
potentially leading to the AI model bypassing 
security measures in pursuit of its goals, 
either maliciously or as a natural result of 
optimisation. 

1.3.2. Current Cybersecurity  
Response Mechanisms

Cybersecurity provides valuable insights 
for LOC. This review examines established 
cybersecurity incident response procedures 
and their applications to LOC protocols. 
Cybersecurity responses are also likely to be 
integral to any AI LOC response, given that they 
involve software running on hardware. As such, 
AI safety and security cannot be considered 
separately from general cybersecurity. While 
this report primarily focuses on detection 
and response, there are other facets of 
cybersecurity that could be crucial in a LOC 
event (e.g. forensics, supply chain security, 
model architecture) and that may provide 
valuable examples for LOC planning. 

1.3.2.1. International and Supranational 
Cybersecurity Frameworks 
The EU has established the most 
comprehensive incident reporting framework 
through multiple complementary regulations. 
The NIS2 Directive is a tiered model that 
classifies entities as ‘essential’ or ‘important’, 
based on their criticality and impact on society 
and the economy (European Commission 
2025a). Initial notification from NIS2-eligible 
organisations to the member state’s Computer 
Security Incident Response Team (CSIRT) 
is required within 24 hours, a detailed report 
within 72 hours and a comprehensive analysis 
within one month. This stepwise approach to 
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incident reporting could serve as a model for 
LOC, allowing for rapid initial response, thorough 
analysis and post-incident investigation.

The EU’s Cyber Resilience Act (CRA) extends 
these requirements to products with digital 
components, mandating cybersecurity 
measures and incident reporting to both 
CSIRTs and the European Union Agency for 
Cybersecurity (ENISA) (European Commission 
2025b). The EU has also implemented 
sector-specific requirements through various 
directives that complement the broader NIS2 
framework (EIOPA 2025; European Council 
2024) These requirements establish detailed 
protocols for industries such as financial 
services, healthcare and critical infrastructure, 
ensuring comprehensive coverage while 
accommodating sector-specific needs. 

Under the UK’s Network and Information 
Security (NIS) regulations, relevant 
digital service providers need to notify the 
Information Commissioner’s Office (ICO) of any 
cybersecurity incident ‘that has a substantial 
impact on the provision of [their] services’ 
within 72 hours (UK Government 2018). 
Factors determining whether an incident has 
a ‘substantial impact’ include the number of 
users affected, the duration of the incident and 
its geographical spread. This broadly aligns 
with the reporting requirements for personal 
data breaches under the UK General Data 
Protection Regulation (GDPR) (ICO 2025a), 
which mandates that organisations report 
personal data breaches to the ICO within 72 
hours of discovery, provided the breach is 
likely to result in a risk to individuals’ rights and 
freedoms (Intersoft Consulting 2025). Unlike the 
NIS regulations, which focus on ensuring service 
continuity and protecting critical infrastructure, 
the UK GDPR prioritises safeguarding personal 

23	 Because CIRCIA has not been fully implemented by relevant agencies in the United States, data collection via its 
reporting requirements may not be entirely complete.

data. Both frameworks emphasise the 
importance of timely reporting to facilitate 
swift responses and mitigate harm.

The National Cyber Security Centre (NCSC) 
serves as the UK’s technical authority for 
cybersecurity, responding to cyber security 
incidents and serving as an incoming hub 
for the reporting of incidents (ICO 2025b). 
All cyber incidents reported to the NCSC are 
triaged and categorised according to their 
severity and potential impact, allowing the 
organisation to allocate resources effectively. 
The NCSC also provides technical advice 
and guidance to affected organisations, 
leveraging its access as a part of Government 
Communications Headquarters (GCHQ) and 
international and industry partnerships. If 
NCSC becomes aware of an incident before a 
victim organisation, it will both notify and help 
with response and investigation.  

The United States has a varied and diffuse 
regulatory environment, with many regulatory 
actors at both state and federal levels. The 
sector-specific approach to cyber regulation is 
reflected in the enactment of the federal Cyber 
Incident Reporting for Critical Infrastructure 
Act of 2022 (CIRCIA), which applies to 
covered entities in critical infrastructure 
sectors (CISA 2025b). Covered entities must 
report substantial incidents within 72 hours 
and ransom payments made in response 
to ransomware attacks within 24 hours. 
Substantial cyber incidents must be reported, 
including significant impacts on confidentiality, 
disruption of business operations, impacts to 
safety or resiliency of operational models, and 
national security implications. CIRCIA aims to 
generate data to understand attack patterns.23 
Despite the varied regulatory environment in 
the United States, states such as California 
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often drive the discourse due to their breach 
notification laws, which have become the de 
facto standard given the national scope of 
many large data aggregators (Bonta 2025).

1.3.2.2. Cybersecurity Incident Detection 
and Response Processes
Effective response to cybersecurity incidents 
requires coordination mechanisms at 
the organisational, sectoral, national and 
international levels. 

Security Operations Centres and Computer 
Incident Response Teams

The International Telecommunications Union 
(ITU) works with member states (194 across 
the globe) to assist in creating and enhancing 
national computer incident response teams 
(CIRTs), which play critical roles in national 
and global cybersecurity. These efforts were 
borne out of a recognition that deficiencies at 
the nation-state level represent a vulnerability 
in combating cybersecurity threats (ITU 2025). 
CIRTs are also internationally connected, with 
the intent of facilitating information sharing 
on emerging threats and vulnerabilities and 
enabling more effective coordinated responses 
to cyber incidents that cross borders (Tounsi & 
Rais 2018).  

In smaller organisations, security operations 
centres (SOCs) and CIRTS are often one and 
the same. However, in larger organisations 
there can be a division of labour, with SOCs 
focusing on continuous monitoring and initial 
response, and CIRTs focusing on responding 
to security incidents after detection (Taurins 
2020). The traditional tier-based model 
establishes multiple levels of analysis and 
response (Taurins 2020): Tier 1 analysts 
provide continuous monitoring and initial 
incident triage; Tier 2 specialists conduct 
deeper investigation of identified threats; 
and Tier 3 experts focus on advanced threat 

hunting and incident response for the most 
sophisticated attacks.

Information Sharing and Analysis Centres (ISACs) 

Cybersecurity information exchange relies 
on various mechanisms, with the Forum 
of Incident Response and Security Teams 
(FIRST) and regional networks such as EU 
CSIRT providing platforms for cross-border 
and regional coordination (FIRST 2025). 
However, ISACs are the primary networks for 
sector-specific threat intelligence and incident 
response. ISACs have organisational structures 
that include boards, working groups and tiered 
memberships that align access to resources 
with member capabilities. For example, the 
Financial Services ISAC (FS-ISAC) has eight 
membership tiers that determine access to 
threat intelligence and operational support 
(FS-ISAC 2025). ISACs operate through 24/7 
monitoring and coordination of response 
efforts across member organisations. 
Many employ automated platforms for 
real-time threat intelligence sharing using 
standardised formats such as Structured 
Threat Information eXpression (STIX) (MITRE 
n.d.). The relationship between ISACs and 
government agencies exemplifies a successful 
public–private partnership model, enabling 
coordinated responses to security incidents 
while maintaining sector-specific autonomy. 
This collaboration has proven particularly 
effective during major cyber incidents, 
ensuring rapid information sharing while 
maintaining operational security and 
independence (Ruohonen 2024). 

Public–Private Cooperation 

The evolution of public–private cooperation 
in cybersecurity highlights the effectiveness 
of collaborative efforts to address complex 
security challenges. The U.S. Department 
of Homeland Security’s Automated Indicator 
Sharing (AIS) programme stands as an 
example, enabling real-time exchange of cyber 
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threat data between government agencies and 
private sector organisations. This programme 
allows private sector participants to receive 
government-validated threat intelligence. 
AIS incorporates governance structures that 
balance stringent security requirements with 
operational flexibility, ensuring both security 
and efficiency (CISA 2025c). Similar models 
exist in other countries (Australian Signals 
Directorate 2025), with such programmes 
revealing common success factors, including 
bidirectional data flows. Legal frameworks for 
these initiatives include liability protections for 
shared information and privacy safeguards, 
which ensure both security and compliance. 
Training and capability development are 
also crucial, with the U.S. Cybersecurity and 
Infrastructure Security Agency (CISA) offering 
technical guidance to AIS participants. 

Effective incident response is a key 
component of cybersecurity frameworks, 
with well-established organisational structures 
critical to managing and containing cyber 
incidents. Effective incident response requires 
a well-defined incident lifecycle. Drawing from 
frameworks such as NIST’s Cybersecurity 
Framework, incidents typically progress 
through five key stages: 1) identify; 2) protect; 
3) detect; 4) respond; and 5) recover (NIST 
2025). These stages provide a structured 
approach for managing cybersecurity risks 
and offer strong parallels to managing LOC 
risks. Research consistently underscores 
the importance of clearly defined roles, 
responsibilities and command structures, 
which ensure that incident response teams 
can operate efficiently and decisively (Taurins 
2020; Hodgson et al. 2022). Organisations 
with established incident command models 
are generally better positioned to respond to 
and contain cybersecurity incidents than those 
relying on ad hoc, less structured responses 
(Hodgson et al. 2022). Multi-disciplinary 
teams – comprising technical experts, policy 

advisors and communications specialists – 
bring diverse perspectives and expertise to 
the table, leading to more effective incident 
management (Taurins 2020). The success of 
these coordination mechanisms, particularly 
in terms of tiered response frameworks and 
cross-entity collaboration, provides a valuable 
framework for developing comprehensive AI 
incident response strategies. 

1.3.3. Historical Case Studies  
in Cybersecurity 

Two illustrative case studies provide insights 
into relevant lessons on what makes an 
emergency cybersecurity response successful 
or unsuccessful. These cases, explored below, 
emphasise the value of strong preparedness 
and planning. 

1.3.3.1. NotPetya  
NotPetya, a malware, was first discovered in 
June 2017 when it infected entire networks 
across various countries, primarily targeting 
organisations in Ukraine. It was able to 
spread rapidly across networks without 
any intervention from users, using various 
vulnerability exploits and credential theft 
methods. Unlike traditional ransomware, 
which only temporarily damages or restricts 
access to files, NotPetya caused irreversible 
damage, essentially wiping files with no hope 
of recovery. The attack was attributed to 
the Russian government and caused over 
$10 billion in damages worldwide, affecting 
numerous global companies and causing 
widespread disruption (BBC 2017). 

The incident highlights three key lessons. 
First, the potential for destructive malware 
spreading widely was made clear to a broad 
audience, as the attack resulted in disruption 
and damage beyond its initial target. Second, 
it highlighted how cyberattacks could create 
physical disruptions to critical infrastructure. 
Moreover, resilience failures in complex 
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infrastructure were exposed when backups 
proved inadequate to restore network function. 
Notably, a multi-billion-dollar company’s IT 
model was only saved by an unexpected 
power outage. Third, legal uncertainty in novel 
emergencies was demonstrated when insurers 
for Maersk initially refused to pay for damages, 
leading to a landmark insurance lawsuit that 
was not settled until 2024 (Wolff 2021). 

1.3.3.2. Colonial Pipeline  
Ransomware Attack
In 2021, a ransomware attack on Colonial 
Pipeline – the largest pipeline model for 
refined oil products in the United States – 
significantly disrupted fuel supplies along 
the East Coast. A hacker group known as 
DarkSide gained access to Colonial Pipeline’s 
IT network through a compromised VPN 
password, infecting the company’s network 
with ransomware. The company shut down 
its pipeline for five days and elected to pay the 
75-bitcoin ransom (approximately $4.4 million 

at the time of transfer). The attack resulted in 
widespread public panic buying and significant 
costs and damages for the company. The 
response to the attack provides two valuable 
lessons for managing AI incidents: public–
private coordination and the importance of 
incident response plans.

Whether in cyber or AI incidents, streamlined 
communication between private entities and 
government agencies is likely to result in the 
more effective deployment of resources for 
companies and critical information to inform 
government procedures. The decision to shut 
down the pipeline and, more controversially, 
pay the ransom had repercussions for the 
business, the public and the company’s 
reputation. Based on this, response plans 
should detail various attack scenarios, 
including strategies for sustaining critical 
operations during disruptions and clearly 
defined roles and responsibilities for the team 
(Goodell & Corbe 2023). 

Box 4: Key takeaways from biosafety emergency response

•	 Biological lab accidents serve as useful analogies for AI LOC incidents, highlighting the 
importance of preventive safety protocols.

•	 Historical bio-incidents emphasise the importance of:

•	 Infrastructure vulnerability mitigation

•	 Early detection and rapid response capabilities

•	 Clear stakeholder roles and responsibilities.

•	 Cross-border biological events demonstrate the need for clear jurisdictional guidelines and 
international cooperation.

•	 Biosafety phases relevant to AI include:

•	 Surveillance and early detection for rapid identification

•	 Immediate response and escalation for containment

•	 Information sharing to facilitate coordinated, multi-organisational action.
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1.4. Biosafety Emergency 
Response

1.4.1. Biosafety Lessons for AI LOC 
Incident Response 

Biological laboratory accidents, which occur 
when hazardous agents escape containment 
during research despite safety protocols, 
provide a useful model for LOC incidents 
(Ross & Harper 2023). Studying lab accident 
responses offers particularly valuable 
insights into managing the technical and 
jurisdictional risks of LOC because a LOC 
scenario could be very hard to mitigate and 
could inflict significant damage. This is similar 
to how a leak from a secure bio-lab could 
have widespread and difficult to mitigate 
consequences, making prevention strongly 
preferable. Therefore, while the two fields 
differ significantly, the lessons of biosafety 
protocols can still provide a framework for 
preventing AI LOC. 

Historical incidents highlight key lessons 
for AI response frameworks, particularly in 
infrastructure vulnerabilities, early detection 
and rapid response. They also underscore 
the need for clear legal jurisdiction in cross-
border incidents, as AI models often span 
multiple countries, requiring well-defined 
containment protocols and international 
cooperation. Lessons from biological 
containment failures stress the importance 
of robust AI monitoring, clear stakeholder 
responsibilities and pre-established 
containment measures. Like biological threats, 
AI risks can spread unpredictably, making 
regular safety audits, controlled access and 
multi-organisation coordination essential. 
Biological containment also requires rapid 
response, which may similarly be warranted 
in high consequence AI events. Effective 
AI incident response requires technical 
solutions and institutional frameworks, 

as well as clear authority lines and multi-
jurisdictional cooperation.

1.4.2. Current Biosafety  
Response Mechanisms

Biological lab accidents provide a useful model 
for LOC incidents, occurring when hazardous 
agents escape containment during research 
despite safety protocols (Ross and Harper, 
2023). Studying lab accident responses 
particularly offers valuable insights into 
managing the technical and jurisdictional risks 
of LOC. 

1.4.2.1. International and Supranational 
Biosafety Frameworks 
The landscape of biosafety and biosecurity 
oversight has been framed by the increased 
recognition of biological risks and by several 
high-profile laboratory incidents (Benderly 
2018). At the international level, the World 
Health Organisation’s (WHO) Laboratory 
Biosafety Manual (LBM) serves as a key 
document for biosafety practices; however, 
it lacks legal authority and enforcement 
(WHO 2020). The International Organisation 
for Standardisation (ISO) 35001 bio-risk 
standard complements the WHO manual 
by providing specific requirements for bio-
risk management models and has become 
particularly important for laboratories seeking 
international accreditation (Callihan 2019); 
however, it is also not legally binding (ISO 
2019). In terms of legal obligations, a public 
health emergency of international concern 
(PHEIC) is a formal declaration by the WHO 
defining ‘an extraordinary event which is 
determined to constitute a public health risk to 
other States through the international spread of 
disease and to potentially require a coordinated 
international response’ (Wilder-Smith & 
Osman 2020). WHO member states are legally 
obligated to respond promptly, allowing for 
rapid and coordinated response. 
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The EU has developed a comprehensive 
approach to biosafety regulation through 
the legally binding directive 2000/54/EC on 
biological agents at work, which provides the 
basic framework for laboratory safety, with 
additional regulations addressing specific 
aspects of biological research and containment 
(EU-OSHR 2021). This directive requires EU 
member states to implement its provisions into 
their national laws rather than applying directly 
to companies in the member states.

The UK biosafety framework, led by the Health 
and Safety Executive (HSE), is anchored in 
the Control of Substances Hazardous to 
Health (COSHH) Regulations, the Specified 
Animal Pathogens Order (SAPO) and the 
Genetically Modified Organisms Regulations 
(Health and Safety Executive 2014; 2025a; 
2025b). It emphasises risk assessment 
and the requirement for thorough safety 
documentation and regular reviews.

In the United States, biosafety regulation 
relies on federal oversight and guidance, 
notably the Biosafety in Microbiological and 
Biomedical Laboratories (BMBL) manual (CDC 
& NIH 2020). While not legally binding, BMBL 
compliance is often required by federal funding 
agencies, universities and accreditation bodies. 
Additional regulations include the Select Agent 
Regulations (42 CFR Part 73) for high-risk 
pathogens and National Institutes of Health 
(NIH) guidelines for genetic research, with 
Occupational Safety and Health Administration 
(OSHA), part of the Department of Labor, 
enforcing worker safety standards (42 CFR 
Part 73; NIH 2024; OSHA 2025).

1.4.2.2. Biological Incident Detection and 
Response Processes 
Biosafety frameworks progress through three 
key phases: 1) surveillance and early detection, 
serving as the first line of defence; 2) immediate 
response and escalation, ensuring swift 

containment; and 3) information sharing and 
communication, enabling coordinated action. 

Surveillance and Early Detection

Early detection and surveillance are critical 
components of effective biological incident 
response frameworks. The model operates 
on two key levels: 1) continuous pre-incident 
monitoring; and 2) early detection with clear 
escalation protocols. Continuous surveillance 
serves as the first line of defence, with models 
collecting and analysing data to establish 
baselines and identify concerning deviations. 
The U.S. Centers for Disease Control’s (CDC) 
Laboratory Response Network demonstrates 
this approach, integrating facility-level 
monitoring with broader surveillance models. 
In the United Kingdom, the Health Security 
Agency’s (UKHSA) Reference Laboratory 
Network integrates localised facility-level 
monitoring with second generation surveillance 
models (UK Government 2014). Internationally, 
there has been a recent emphasis on early 
warning detection efforts (primarily in the 
interest of biosecurity to detect pandemic 
warning models) that is evident through the 
establishment of global communities of interest 
such as GLOWACON, aviation surveillance 
programmes and the Coalition for Epidemic 
Preparedness Innovations’ (CEPI) emphasis 
on surveillance to support its 100-day mission 
(European Commission 2024b).

Effective early detection requires both 
technical models and clear organisational 
structures for incident recognition and 
response. This includes designated teams 
with explicit authority and responsibility for 
escalation, which are supported by well-
defined triggers for action. Success depends 
on sustained investment in infrastructure and 
training, particularly in recognizing early warning 
signs. Importantly, legal and policy frameworks 
must support escalation pathways even when 
faced with institutional resistance or initial 
scepticism of warning signs.
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Immediate Response and Structured Escalation 

The initial response to an incident requires 
precise, predetermined actions focused on 
containment and notification. The first 24–48 
hours are crucial for success. Laboratory 
response protocols emphasise immediate 
containment actions including isolation 
of affected areas, activation of enhanced 
containment measures and implementation of 
access controls. For example, the CDC’s Select 
Agent Program requires the implementation 
of immediate incident response measures, 
including activating containment protocols 
and restricting access to affected areas in 
the event of an exposure or security breach 
(CDC 2023). The UKHSA escalation process 
follows a structured approach, with incidents 
detected, assessed through a dynamic risk 
assessment and classified into response levels 
(routine to severe) (UK Government 2025). 
An incident management team coordinates 
containment and response, with escalation or 
de-escalation based on risk. Once stabilised, 
the response transitions to recovery and 
review. Escalation requires balancing rapid 
action with appropriate verification. Public 
health laboratories serve as designated 
verification and escalation nodes, maintaining 
both the technical capability for incident 
verification and the legal authority to trigger 
higher-level responses. This process follows 
predetermined protocols with clear triggers for 
different response levels (APHL 2016).

Information Sharing and Communication 

Effective biological incident management 
requires protected disclosure mechanisms 
and clear escalation pathways. Structured 
communication protocols balance rapid 
information sharing with confidentiality. 
Legal protections, such as the Whistleblower 
Protection Act (1989) in the United States, 
safeguard those reporting risks, encouraging 
timely disclosure and escalation (FTC-OIG 
2025). The Laboratory Response Network 

exemplifies secure reporting channels, enabling 
facilities to share incident data while protecting 
confidentiality (CDC 2024). As incidents 
escalate, predefined protocols ensure that 
relevant stakeholders receive necessary 
information but that control over sensitive 
details is maintained. 

1.4.3. Historical Case Studies in Biosafety 

1.4.3.1. 2004 SARS and Pirbright Foot-
and-Mouth Disease 
Historical lab accidents offer key lessons for 
AI LOC response frameworks, particularly the 
2007 Pirbright foot-and-mouth disease (FMD) 
leak in the United Kingdom and the 2004 SARS 
lab accidents in Asia. At Pirbright, the FMD 
virus escaped due to faulty shared drainage 
between the Institute for Animal Health and the 
vaccine manufacturer Merial (Enserink 2007). 
Contaminated soil led to outbreaks, requiring 
the culling of over 2,100 animals (Ghosh 
2011). While the UK government responded 
swiftly, activating emergency protocols within 
hours, the incident exposed oversight gaps in 
shared infrastructure (Anderson 2008). The 
2004 SARS lab incidents in Beijing and Taiwan 
reveal differing response effectiveness. In 
Beijing, delayed reporting led to secondary 
infections, whereas in Taiwan there was swift 
implementation of isolation and contact 
tracing, and SARS research was suspended 
until biosafety was assured (CIDRAP 2003). 
This contrast underscores the importance of 
rapid detection, clear reporting structures and 
strict adherence to emergency protocols.

1.4.3.2. Morbidity and Mortality Weekly 
Report (MMWR) 
Professional networks play a crucial role 
in rapid communication and early disease 
detection. The CDC’s Morbidity and Mortality 
Weekly Report (MMWR) has been instrumental 
in identifying and tracking emerging public 
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health threats. Notably, it facilitated the first 
identification of AIDS in medical literature (CDC 
2001). Similarly, the European Wastewater 
Observatory for Public Health has created a 
dashboard tracking pathogen transmission 
across European countries, with data sharing in 
near real-time (European Commission 2025c). 
These cases show how information sharing 
enhances situational awareness and response 

efforts. Standardised reporting and ongoing 
surveillance can improve detection, enabling 
faster threat recognition, thus response. 
Importantly, the communication of an incident 
does not necessarily translate into actions 
being taken, as although early communication 
can help identify an incident, coordinating the 
response is crucial to mitigating harms.
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Annex B. Technical Dimensions related to LOC 

Technical 
Dimension Impact on LOC

Autonomy

The AI model’s ability to set and autonomously pursue long-term goals impacts whether 
it could work toward objectives that undermine human control. The stability of goals 
affects predictability – an AI model with shifting goals could become more difficult to 
contain. If the AI can strategise well, it may evade containment. 

Performance
If an AI model operates significantly faster than human decisionmakers, it could exploit 
reaction delays to outmanoeuvre containment. High-speed operation may enable rapid 
cyber offensives, making mitigation more challenging. 

Self-
Replication

Self-replication refers to the capability of an AI model to autonomously create copies 
of itself, potentially leading to uncontrolled proliferation or spread. If an AI model can 
self-improve quickly, including through R&D capabilities, it becomes harder to contain 
and more difficult to predict. Access to its training algorithms could allow rapid iteration 
on its own design. The ability to copy itself also enables distribution across networks, 
making containment more difficult. 

Deception

A highly deceptive AI model could manipulate humans into taking actions against their 
best interests, for example forming alliances with adversarial actors or bypassing safety 
restrictions. Deception also increases the risk of a prolonged, unnoticed accumulation 
of resources before intervention is possible. 

Compute

AI models requiring large-scale compute resources may initially be easier to track and 
contain, as access to high-performance data centres is limited. The AI may evade 
control if it can optimise its efficiency or distribute its operations across multiple 
models. Low compute requirements increase the risk of proliferation. 

Capabilities

High capability in cyber operations may allow the AI to gain unauthorised access to 
critical infrastructure and compute resources. Proficiency in bioweapon development 
can introduce large-scale risks as well as threats of leverage. At extreme levels, 
offensive capabilities could enable direct coercion of governments or populations. 

Power Seeking

Power-seeking behaviour refers to actions taken by a model to acquire, maintain or 
enhance its control or influence over resources, potentially at the expense of human 
interests. Loss of control over advanced AI systems is likely to amplify power-seeking 
behaviour, as misaligned models may pursue strategies to entrench their influence and 
resist shutdown or oversight, undermining human authority.
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Annex C. Scenario Premises 

For this report, a structured framework was 
developed to map key pathways through 
which AI LOC scenarios could potentially 
emerge. This process integrated insights 
from existing literature on LOC risks, expert 
analyses, and analogies from cybersecurity 
and biosafety incidents to ensure both 
plausibility and relevance.

The scenario development relied on 
key assumptions about failure points 
in AI oversight and safety mechanisms, 
identification of escalation pathways, and 
scenario analysis to derive recommendations 
for improving response and reducing risks. 
To contextualise how LOC incidents would 
be managed, the research team applied 
network analysis and authorities mapping, 
following methodologies from Heath & Lane 
(2019) and Virdee & Hughes (2022). Network 
analysis visualises key actors and their 
interactions and decision making points, while 
authorities mapping clarifies jurisdictional 
roles and legal mandates. This approach 
highlights coordination gaps where no clear 
legal responsibility over LOC risks exists. It 
also identifies potential chokepoints – such 
as an over-reliance on a small number of AI 
developers or regulators – that could delay 
response efforts.

This report presents scenarios based on 
several key premises. First, it is assumed 

that LOC incidents occur in a society where 
large, well-resourced companies lead AI 
development. Rather than focusing on 
specific companies, models or countries, 
the analysis explores the full ecosystem and 
offers recommendations for various actors to 
improve response strategies. While reference 
is made to existing policy frameworks, an 
exhaustive legal or regulatory analysis is not 
provided; rather, the focus is on the roles 
of key organisational actors, particularly 
developers and governments. There is also 
an assumption made that decision makers 
can determine where and how a LOC incident 
occurred, although attribution remains 
inherently complex and uncertain in real-
life scenarios. It is assumed that there is 
significant uncertainty regarding both the 
timeframe in which LOC risks emerge and the 
progression of such scenarios.

This report focuses on AI developers and 
governments; however, there is a non-zero 
probability that AI LOC could emerge from 
less traditional spaces (e.g. individuals, 
universities). These entities are likely to have 
less robust mechanisms or organisational 
bandwidth than AI developers or governments, 
making detection and escalation potentially 
more challenging.
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Annex D. Analysis of Non-Realised Incident 

Phase Description

AI Development

In a non-realised scenario, an AI model poses risks of LOC through two primary 
pathways: 1) the model reaches capabilities that could enable it to undermine 
human control; or 2) there exists the potential for these capabilities to be used, 
either due to misalignment or misuse.

Early Warning and 
Detection of a Non-
Realised Risk

The detection of a LOC event can occur through either or both pathways. First, 
detection may occur when an AI model crosses observable thresholds that 
indicate the capability to undermine human control, such as a highly robust and 
sophisticated ability to selectively underperform when tested with evaluations. 
Second, detection might occur through evidence of misalignment or misuse 
potential, such as model theft or an AI model attempting to self-exfiltrate.

Escalation and 
Containment of a 
Non-Realised Risk

Once non-realised LOC risks are detected, the situation would be escalated 
both internally (through an organisation’s chain of command) and externally (to 
stakeholders such as government agencies, AISIs and compute providers). The 
situation would also require containment through sequential levels of action 
depending on severity and likelihood of harm: 1) organisations implement 
enhanced safety and security measures, such as strengthening monitoring and 
securing model weights; 2) if initial measures prove insufficient, developers 
may consider access and use restrictions, halting model development and or 
potentially deleting model weights entirely; and 3) the containment of serious 
risks may require international coordination among AI developers and nations.
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Annex E. Analysis of a Realised Incident 

Phase Description

Starts from escalation of non-realised scenario

LOC Event

A realised LOC scenario may begin when the containment of a model exhibiting 
early warning signs fails. The actual LOC event may occur through various means 
including model theft, successful exfiltration of model weights beyond the data 
centre, or the repurposing of resources within a developer’s data centre.

Pre-Detection of a 
Realised Risk

Before detection, an AI system may produce outputs that enhance its ability to 
operate without oversight in several ways. First, it may initiate processes that 
lead to the acquisition of additional resources, such as compute or financial 
assets, potentially through cyber intrusion, eliciting human assistance, or other 
unauthorised means. Second, it may increase its capabilities through mechanisms 
like AI-assisted research and development or model distillation. Third, it may 
contribute to the development or deployment of high-impact tools – such as 
coercive or destabilising technologies – that enhance its influence or resilience.

Early Warning and 
Detection of a 
Realised Risk

The timing of detection impacts response options and can occur at three main 
points: 1) immediately during or sometime after the initial LOC event (through 
evidence such as logs of self-exfiltration or disabled safeguards); 2) during the 
pre-detection of a realised LOC risk phase (through signs such as unmonitored 
model weights running or unexplained surges in cyber intrusions with similar 
attack patterns); or 3) when the AI strategically reveals itself or is otherwise 
revealed (through actions such as approaching human groups with threats or 
offers, explicit attempts at deploying weapons, or launching large-scale attacks).

Escalation and 
Verification of a 
Realised Risk

Escalation pathways depend on which actors first detect the LOC and what 
specifically they discover. For instance, the detection of an initial LOC event within 
an AI developer would likely trigger a response chain to national government 
actors, while the discovery of suspicious compute acquisition might first alert 
cloud providers who then notify government authorities.

Containment 
and Mitigation of 
Realised Risk

Containment strategies should be adapted to the AI model’s capabilities, including 
its accumulated resources and objectives. Response elements may include 
tracing and shutting down the AI’s compute and financial resources, defending 
potential targets, and attempts to limit compute access. A simplified outcome, for 
the purposes of this report, is either successful containment of the AI model, or its 
continued evasion of control, potentially leading to long-term risks.




