

Agent Name Service (ANS)
for Secure AI Agent
Discovery

Towards Secure and Interoperable Agentic AI:
DNS for AI Agents

Version 1.0
May 13, 2025

Page 1

OWASP.org

The information provided in this document does not, and is not intended to, constitute legal advice. All
information is for general informational purposes only. This document contains links to other third-party
websites. Such links are only for convenience and OWASP does not recommend or endorse the contents of
the third-party sites.

License and Usage:

 This document is licensed under Creative Commons, CC BY-SA 4.0

 You are free to:

● Share — copy and redistribute the material in any medium or format

● Adapt — remix, transform, and build upon the material for any purpose, even commercially.

● Under the following terms: ○ Attribution — You must give appropriate credit, provide a link to the license,
and indicate if changes were made. You may do so in any reasonable manner but not in any way that
suggests the licensor endorses you or your use. ○ Attribution Guidelines - must include the project name as
well as the name of the asset Referenced : OWASP Gen AI Security Project - Agentic Security Initiative:
Agentic AI - Agent Name Service (ANS) for Secure AI Agent Discovery

● Share Alike — If you remix, transform, or build upon the material, you must distribute your contributions
under the same license as the original.

Link to full license text: https://creativecommons.org/licenses/by-sa/4.0/legalcode

Page 2

OWASP.org

Table of Content

Abstract 4

1. Introduction 5

2. Related Work 6

3. Agent Registry Architecture 7

3.1 Agent Registration and Renewal 10

3.2 PKI Integration 11

3.3 ANS Protocol Notation 12

3.4 Protocol-Agnostic Communication Schema 14

3.5 ANS Naming Structure and Resolution 16

3.6 ANS Challenges and Governance 22

3.7 Agent Identity 23

4. Request/Response Schema for ANS Name Resolution 28

5. Protocol Adapter Layer 31

5.1 A2A Protocol Adapter 31

5.2 MCP Adapter 32

Page 3

OWASP.org

5.3 ACP Adapter 32

5.4 Extension Points 32

5.5 Cross-Protocol Interoperability Limits 32

5.6 Protocol Adapter API Definition 33

6. Security Analysis and Considerations 35

6.1 MAESTRO-Based Threat Analysis 35

6.2 Additional Security Controls and Considerations 37

7. Implementation Considerations 39

8. Future Considerations 42

Acknowledgements 44

OWASP Top 10 for LLM Project Sponsors 45

Project Supporters 46

References 48

Appendix A: Complete Request/Response Schemas 49

Appendix B: Glossary of Terms - Agent Name Service (ANS) 50

Page 4

OWASP.org

Abstract

The proliferation of AI agents requires robust mechanisms for secure discovery. This paper introduces the
Agent Name Service (ANS), a novel architecture based on DNS addressing the lack of a public agent
discovery framework. ANS provides a protocol-agnostic registry mechanism that leverages Public Key
Infrastructure (PKI) certificates for verifiable agent identity and trust.

The architecture features several key innovations: a formalized agent registration and renewal mechanism
for lifecycle management; DNS-inspired naming conventions with capability-aware resolution; a modular
Protocol Adapter Layer supporting diverse communication standards (A2A, MCP, ACP, etc.); and precisely
defined algorithms for secure resolution. We implement structured communication using JSON Schema and
conduct a comprehensive threat analysis of our proposal.

The result is a foundational agent directory service protocol addressing the core challenges of secure
discovery and interaction in multi-agent systems, paving the way for future interoperable, trustworthy, and
scalable agent ecosystems.

Keywords: Agent Name Service (ANS), Agentic AI, Service Discovery, Public Key Infrastructure (PKI),
Interoperability, Secure DNS, Formal Methods, Multi-Agent Systems (MAS)

Page 5

OWASP.org

1. Introduction
Agent-to-agent communication is expected to become a significant component of internet traffic, driving
the need for reliable mechanisms enabling agents to discover, verify, and securely interact with one another.
Traditional service discovery, notably the Domain Name System (DNS) [RFC 1035, 1987], primarily maps
human-readable names to network addresses and is insufficient for the dynamic, semantically rich, and
security-sensitive environment of agentic AI. Enhancements like DNS-Based Service Discovery (DNS-SD)
[RFC 6763, 2013] offer improvements but still fall short of the necessary agent capability granularity, identity
verification, and lifecycle management required by autonomous agents. Furthermore, maintaining a
trustworthy registry necessitates robust processes for agent registration and periodic renewal.

Several agent communication protocols are emerging to standardize interactions:

• Agent2Agent (A2A) Protocol [Surapaneni et al., 2025]: Developed by Google, providing a
standardized protocol for inter-agent communication, aiming to bridge different agent frameworks.

• Model Context Protocol (MCP) [Anthropic, 2024; MCP Specification, 2025]: Focused on simplifying
the integration of AI models with external tools and data sources.

• Agent Communication Protocol (ACP) [IBM Research, 2025]: Designed to standardize how agents
communicate, enabling automation, collaboration, UI integration, and developer tooling, evolving
from initial MCP concepts.

This paper outlines the Agent Name Service (ANS), a framework for a protocol-agnostic Agentic AI Registry.
ANS complements these emerging protocols by integrating Public Key Infrastructure (PKI) for identity and
trust, defining structured communication via JSON Schema, incorporating DNS-like naming for discovery,
establishing mechanisms for agent registration and renewal, and providing a formal specification of the
protocol to enhance precision and implementability. ANS aims to provide a universal, secure directory
service foundation for interoperable agent ecosystems.

Page 6

OWASP.org

2. Related Work

Traditional service discovery, like DNS [RFC 1035, 1987], provides essential name-to-address resolution but
lacks the semantic understanding and security features needed for agentic AI. DNS-SD [RFC 6763, 2013]
adds local service discovery capabilities but doesn't address verifiable identity or complex agentCapability
matching on a global scale.

Research in multi-agent systems (MAS) has explored various agent communication languages (ACLs), such
as those defined by the Foundation for Intelligent Physical Agents (FIPA) [FIPA, 2002]. While influential,
these often lack standardized, built-in security mechanisms and universally adopted transport protocols
suitable for the modern internet.

The emerging protocols represent significant advancements:

• A2A [Surapaneni et al., 2025] focuses on bridging agent ecosystems.

• MCP [Anthropic, 2024; MCP Specification, 2025] emphasizes context and integration of tools/data
for AI models.

• ACP [IBM Research, 2025] targets broader agent-to-agent communication needs, including
delegation and orchestration.

Our work builds upon these efforts not by replacing them, but by providing a complementary, protocol-
agnostic infrastructure layer. ANS differentiates itself by integrating PKI-based identity verification directly
into the discovery and lifecycle management process, offering a universal registry mechanism that
enhances trust and facilitates secure interaction across different protocol standards via a common
discovery plan. Furthermore, the formalized specification of the ANS protocol ensures clarity and ease of
implementation.

Page 7

OWASP.org

3. Agent Registry
Architecture

The proposed Agent Registry architecture provides a secure, interoperable platform for agent discovery and
interaction, supporting multiple communication protocols through a modular design. Key components
include:

• Requesting Agent: The entity initiating the agent registration process, which could be an individual,
organization, or automated system seeking to register a new agent or update existing agent
information in the registry.

• Agent Registry: A potentially distributed database for storing ACEM (Agent Credential and
Entitlement Management) and DID (Decentralized Identifier) related information. This registry
encompasses agent capabilities, security policies, PKI certificates, protocol-specific metadata (via
protocolExtensions), and registration/renewal timestamps, supporting a comprehensive framework
for agent identity, authentication, and authorization.

• Certificate Authority (CA): A trusted entity issuing and managing X.509 digital certificates [RFC
5280, 2008] for agents, forming the root of trust.

• Registration Authority (RA): Verifies agent registration/renewal requests, interacts with the CA to
issue certificates based on Certificate Signing Requests (CSRs), and manages the agent lifecycle
(registration, renewal, revocation). It enforces registry policies and validates the legal entity of the
Requesting Agent.

• Protocol Adapter Layer: Translates between the registry's internal representation and protocol-
specific formats (details in Section 5).

• Request/Response Schema: A protocol-agnostic JSON-based schema for registry interactions
(discovery, registration, etc.), incorporating PKI data and allowing protocol-specific extensions
(details in Section 4).

• Agent Name Service (ANS): Enables agent discovery using human-readable, structured names,
coupled with agentCapability-based resolution (details in Section 3.5).

Figure 1 illustrates the core components of the Agent Name Service (ANS) and how they interact. Imagine an
Agent trying to find another agent. It starts by contacting the ANS Service, which acts like a central
directory. The ANS Service relies on the Agent Registry, a specialized database containing information about

Page 8

OWASP.org

all registered agents, including their capabilities, security policies, and contact details. The Agent Registry
also interacts with a Certificate Authority (CA), which issues and manages digital certificates to verify agent
identities, and a Registration Authority (RA), which validates new agents joining the system. To support
different communication protocols, the ANS Service uses a Protocol Adapter Layer, which translates
requests and responses into the appropriate format. All communication with ANS services is structured with
JSON schemas. Together, these components form the Agent Registry Infrastructure that allows secure and
reliable agent discovery.

The Protocol Adapter Layer translates between the registry's internal representation and protocol-specific
formats. For example, consider an agent registering with the MCP. An MCP tool description might be
represented as a JSON blob. Critically, the agent would need to be registered with ANS first and foremost.
Therefore, imagine this tool is associated with the following ANSName
"mcp://sentimentAnalyzer.textAnalysis.ExampleCorp.v1.0". This would mean the MCP tool is now discoverable
via the ANS. The MCP specific extension data itself might look like this:

{
"description": "Analyzes sentiment of text input.",
"input_schema": {
"type": "string",
"description": "Text to analyze."
},
"output_schema": {
"type": "object",
"properties": {
"sentiment": {
"type": "string",
"enum": ["positive", "negative", "neutral"]
},
"score": {
"type": "number",
"description": "Sentiment score (-1 to 1)."
}
}
},
"mcpEndpoint": "https://sentiment.example.com/analyze"
}

The MCP Adapter within the Protocol Adapter Layer would parse this JSON and map it to the registry's
internal columns. This could involve:

• Extracting information implicitly: since the ANSName is
"mcp://sentimentAnalyzer.textAnalysis.ExampleCorp.v1.0", this implicitly defines the:

• Protocol: mcp

• AgentID: sentimentAnalyzer

Page 9

OWASP.org

• agentCapability: textAnalysis

• Provider: ExampleCorp

• Version: v1.0

• Storing the description ("Analyzes sentiment of text input.") in a dedicated description field within
protocolExtensions.

• Serializing the input_schema and output_schema and storing them in a protocolExtensions column
specific to MCP, allowing other MCP-aware agents to understand the tool's interface.

• The actual MCP endpoint "https://sentiment.example.com/analyze" would be stored within the
protocolExtensions, under the key mcpEndpoint.

This normalization process allows the Agent Registry to store and query MCP-specific information in a
protocol-agnostic way, while adhering to the ANSName structure for consistent identification and
resolution.

Figure 1 - ANS Architecture

Table 1 outlines how Google A2A Anthropic MCP, and IBM's ACP validate agents and enforce security within
the ANS. Each protocol uses distinct adapter implementations and validation mechanisms—such as ZKPs
(Zero-Knowledge Proofs), tool schema checks, and role-based controls—to ensure trusted identity,
capability verification, and secure agent interactions. Zero-Knowledge Proofs (ZKPs) are cryptographic
protocols that allow one party (the prover) to convince another party (the verifier) that a statement is true
without revealing any information beyond the validity of the statement itself. These protocols maintain three

Page 10

OWASP.org

essential properties: completeness (a valid proof always convinces an honest verifier), soundness (a false
statement cannot be proven true except with negligible probability), and zero-knowledge (the verifier learns
nothing beyond the statement's validity). ZKPs can be used for capability attestation by enabling agents to
prove they possess certain abilities or skills without exposing the underlying data..

PROTOCOL ADAPTER IMPLEMENTATION VALIDATION MECHANISM SECURITY FEATURES

Google Agent
(Agent 2 Agent)

Native Implementation
with Google SDK

Agent ID card Integrity
verification.

Capability attestation
with ZKP

Anthropic MCP Anthropic compliant adapter
with extension validation

Tool Identity /
Tool Schema verification

Resource access
control

ACP(Agent
communication
Protocol)

IBM ACP Reference
Implementation

Role-based Agent Identify
and
capability enforcement.

Delegation validation

3.1 Agent Registration and Renewal
Maintaining registry integrity requires explicit lifecycle management:

• Registration:

1. An agent submits a registration request (conforming to the defined JSON schema) including
metadata, protocol details (within protocolExtensions), and a CSR.

2. The RA validates the agent's identity and submitted information against registry policies
(potentially involving automated checks or human review).

3. The RA requests a certificate from the CA using the validated CSR.

4. The issued certificate and agent information are stored in the Agent Registry.

• Renewal:

1. Agents periodically submit renewal requests before their registration or certificate expires.

2. The RA verifies continued compliance with policies.

Page 11

OWASP.org

3. The RA requests a new certificate from the CA.

4. The agent's registration/renewal timestamp and potentially updated certificate are stored
in the Registry.

• Deregistration/Revocation: Agents can be deregistered, or their certificates revoked (e.g., due to
key compromise), removing or flagging their entry in the registry and invalidating their certificate via
standard PKI mechanisms (CRL/OCSP).

Figure 2 outlines the steps an agent takes to register with the Agent Name Service (ANS). The
process begins when an Agent sends a Registration Request to the Registration Authority (RA). This
request includes the agent's metadata (name, capabilities, etc.) and a Certificate Signing Request
(CSR). The RA then Validates the agent's identity and information. If the validation Fails, the
Registration is Rejected. If the validation is Successful, the RA requests a Certificate from the
Certificate Authority (CA). The CA issues the certificate and sends it back to the RA.. Finally, the RA
stores the agent's information and certificate in the Agent Registry and sends a Confirmation back
to the Agent, completing the registration process.

Figure 2: Agent Registration Process

3.2 PKI Integration

Page 12

OWASP.org

PKI [RFC 5280, 2008] provides the foundation for trust. Each registered agent possesses a unique
PKI key pair and a corresponding digital certificate issued by the CA via the RA.

• Identity Verification: The certificate binds the agent's public key to its verified identity (e.g., its
ANSName, organizational affiliation). Other agents can verify signatures made with the private key
using the public key in the certificate, ensuring authenticity and integrity.

• Trust Chain: Certificates are validated against the trusted CA, establishing a chain of trust.

• Lifecycle Management: Certificate validity is tied to the registration/renewal cycle. Revoked
certificates are handled using Certificate Revocation Lists (CRLs) or the Online Certificate Status
Protocol (OCSP) [RFC 6960, 2013].

• Simplification: While PKI management can be complex, the RA/CA interaction within the registry
framework aims to streamline certificate issuance and renewal for agent developers compared to
manual processes.

3.3 ANS Protocol Notation
We introduce the following notation for defining ANS elements and operations:

3.3.1 Top Level Elements
• Protocol: Communication Protocol

• AgentID: Agent Identifier

• agentCapability: Agent Capability

• Provider: Provider Name

• Version: Version Number

• Extension: Extension Metadata

• Cert: Agent Certificate (X.509)

• Sig: Digital Signature

• ANSName: Agent Name Service Name

• Endpoint: a resolvable endpoint

3.3.2 Data Types:

Page 13

OWASP.org

• String: Represents a sequence of characters.

• Integer: Represents an integer number.

• Boolean: Represents a boolean value (true or false).

• Set<T>: Represents a set of elements of type T.

So, the top level elements have the following data types:

• Protocol: {a2a, mcp, acp, …} // Enumerated set of protocols

• AgentID: String

• agentCapability: String

• Provider: String

• Version: String (Semantic Versioning)

• Extension: String

• Cert: X.509 Certificate

• Sig: Digital Signature

• ANSName: String // Formatted string as defined below

• Endpoint: String // Network address, service binding

3.3.3 Verification Rules
Certificate Chain Verification

VerifyCertChain (Cert, TrustedCA) -> Boolean:
 1. Get the certificate authority (CA) that signed the Cert
 2. Check for Certificate Revocation status of Cert via CRL or OCSP
 3. If Cert is Revoked Return False
 4. If CA == TrustedCA, Return True
 5. Else, recursively check CA Cert against TrustedCA
 6. If no trusted CA is found in the chain, Return False

Page 14

OWASP.org

Digital Signature Verification

VerifySignature (Data, Signature, PublicKey) -> Boolean:
 1. Use PublicKey to decrypt the Signature
 2. Hash Data using agreed upon function (e.g., SHA-256)
 3. Compare the decrypted signature to the Data hash
 4. If signatures are valid return True, otherwise return False

3.4 Protocol-Agnostic Communication Schema
We define JSON Schema [RFC 7159, 2014] documents for registry interactions (discovery
requests/responses, registration/renewal requests/responses). This ensures structured,
validatable communication.

An example AgentRegistrationRequest schema:

{
 "$schema": "http://json-schema.org/draft-07/schema#",
 "title": "AgentRegistrationRequest",
 "description": "Schema for Agent Registration Request",
 "type": "object",
 "properties": {
 "protocol": {
 "type": "string",
 "enum": ["a2a", "mcp", "acp"],
 "description": "Communication Protocol"
 },
 "agentID": {
 "type": "string",
 "description": "Unique Agent Identifier"
 },
 "agentCapability": {
 "type": "string",
 "description": "Primary Agent Capability"
 },
 "provider": {
 "type": "string",
 "description": "Name of the Provider"
 },
 "version": {
 "type": "string",
 "pattern": "^(0|[1-9]\\d*)\\.(0|[1-9]\\d*)\\.(0|[1-9]\\d*)(?:-((?:0|[1-
9]\\d*|\\d*[a-zA-Z-][0-9a-zA-Z-]*)(?:\\.(?:0|[1-9]\\d*|\\d*[a-zA-Z-][0-9a-zA-Z-

Page 15

OWASP.org

]*))*))?(?:\\+([0-9a-zA-Z-]+(?:\\.[0-9a-zA-Z-]+)*))?$",
 "description": "Semantic Versioning format"
 },
 "extension": {
 "type": "string",
 "description": "Extension Metadata"
 },
 "certificate": {
 "type": "object",
 "properties": {
 "subject": {
 "type": "string",
 "description": "Certificate Subject"
 },
 "issuer": {
 "type": "string",
 "description": "Certificate Issuer"
 },
 "pem": {
 "type": "string",
 "description": "PEM-encoded Certificate (strongly recommended to use
a secure vault reference instead)",
 "readOnly": false
 }
 },
 "required": ["subject", "issuer", "pem"]
 },
 "protocolExtensions": {
 "type": "object",
 "description": "Protocol-specific data"
 }
 },
 "required": ["protocol", "agentID", "agentCapability", "provider", "version",
"certificate"]
}

• Core Fields: Include common elements like agent communication protocol types such as a2a, mcp,
and acp, etc, requesting/responding agent identifiers, timestamps, and PKI certificate details
(subject, issuer, PEM representation - though referencing a secure vault is recommended for the
PEM in production).

• protocolExtensions: A key field within the schema acts as a container for protocol-specific data
(e.g., an A2A Agent Card, MCP tool descriptions, ACP agent profiles). This allows the registry to store
and query protocol-specific agentCapabilities while maintaining a common core schema.

Page 16

OWASP.org

• Validation: All interactions with the registry must be validated against these schemas. (See Section
4 for more details on the schema structure).

3.5 ANS Naming Structure and Resolution
ANS defines a robust, protocol-agnostic mechanism for naming and resolving agents across
heterogeneous agentic environments. Its principal function is to establish a uniform Endpoint
format that encodes identity, agentCapability, and contextual metadata for any given agent,
irrespective of the underlying transport or runtime architecture. ANS ensures that both human-
readable and machine-resolvable identifiers are preserved in a format designed to facilitate
dynamic discovery, rigorous trust verification, secure communication, seamless service
composition, and the representation of relationships between agents. A key motivation for ANS is to
move beyond simple naming resolution to enable precise agentCapability discovery, which is not
achievable with traditional systems like DNS. The design of ANS acknowledges that the agent's
agentCapabilities are paramount for intelligent interactions, distinguishing it from simpler naming
systems like DNS.

3.5.1 Formal Naming Structure

The ANSName is formally defined as a string constructed from the following components:

ANSName = Protocol "://" AgentID "." agentCapability "." Provider ".v"
Version "." Extension

Where:

• Protocol ∈ {a2a, mcp, acp, ...}

• AgentID, agentCapability, Provider, Version, Extension are strings.

Constraints:

• Version MUST adhere to Semantic Versioning standards.

• AgentID, agentCapability, Provider SHOULD be registered with a governance authority (similar
to ICANN).

• Extension SHOULD be used for deployment-specific or provider-defined metadata, not for core
identity. In the actual implementation, a registry of reserved tokens can be used to enhance
security.

Page 17

OWASP.org

Example:

ANSName = "a2a://textProcessor.DocumentTranslation.AcmeCorp.v2.1.hipaa"

3.5.2 Resolution
The resolution mechanism in ANS is engineered to map a fully qualified ANSName to an actionable
reference, such as a network address, service binding, or detailed metadata document (Endpoint).
Resolution can be achieved through distributed lookups, local resolver caches, or enterprise-
specific ANS gateways, providing deployment flexibility. Critically, ANS moves beyond simple name
resolution to facilitate precise agentCapability discovery.

When an agent requires resolution, it queries the ANS service, a fundamental component of the
Agent Registry infrastructure. The query includes the ANSName of the target agent and can
incorporate optional agentCapability filters to refine the search.

Page 18

OWASP.org

Fig. 3. Agent Resolution Process.

Page 19

OWASP.org

Figure 3 depicts how an agent finds another agent using ANS. The process begins when an Agent
sends a Resolution Query, containing the ANSName of the agent it wants to find, to the ANS Service.
The ANS then Queries the Agent Registry for the corresponding agent record. If the Record is Not
Found, the ANS returns an Agent Not Found Error. If the Record is Found, the ANS Verifies the
returned Endpoint (which contains address and security information), including verifying target
Agent’s signature and certificate. If the Verification Fails, an Invalid Endpoint Error is returned. If the
Verification is Successful, the ANS returns the Endpoint to the Agent, enabling it to connect to the
desired agent securely.

3.5.3 Formal Resolution Algorithm
The ANS resolution algorithm takes an ANSName as input and returns a resolvable Endpoint or an
error.

Resolve(ANSName, RequestedVersionRange):
 1. Parse ANSName into Protocol, AgentID, agentCapability, Provider,
Version, Extension
 2. Query Agent Registry for Agents with matching Protocol, AgentID,
agentCapability, Provider
 3. If no match found:
 Return ERROR("Agent not found")
 4. If multiple matches found:
 Match = VersionNegotiation(Matches, RequestedVersionRange)
 if Match == ERROR("Incompatible Version")
 Return ERROR("Incompatible Version")
 5. EndpointRecord = GetAgentEndpointRecord(Match.AgentID)
 6. Valid = VerifyAgentEndpointRecord(EndpointRecord, TrustedCA)
 7. If valid == False
 Return ERROR ("Invalid Endpoint")
 8. Return Endpoint

GetAgentEndpointRecord () -> EndpointRecord

Page 20

OWASP.org

 // EndpointRecord: {data, signature, Cert}
 // Agent Registry implements GetAgentEndpointRecord to get records from
the database.
 // GetAgentEndpointRecord enforces authentication and authorization
with Agent Registry ACL.

VerifyAgentEndpointRecord (EndpointRecord, TrustedCA) -> Boolean:
 1. signatureValid = VerifySignature(EndpointRecord.data,
EndpointRecord.signature, AgentRegistry.PublicKey)
 2. VerifySignature (Data, Signature, PublicKey) -> Boolean:
 1. Use PublicKey to decrypt the Signature
 2. Hash Data using agreed upon function
 3. Compare the decrypted signature to the Data hash
 4. If signatures are valid return True, otherwise return False
 // Verifying Signature is implemented by each language standard
library, for example: java.security.Signature
 3. If signature is invalid return ERROR ("Invalid Signature")
 4. certChainValid = VerifyCertChain(EndpointRecord.cert, TrustedCA)
 5. VerifyCertChain (Cert, TrustedCA) -> Boolean:
 1. Get the certificate authority (CA) that signed the Cert
 2. Check for Certificate Revocation status of Cert.
 3. If Revoked Return False
 4. If CA == TrustedCA, Return True
 5. Else, recursively check CA Cert against TrustedCA
 6. If no trusted CA is found in the chain, Return False
 // Certificate Chain validation, and Certificate Revocation Check
are implemented via Library in standard language , for example Java:
java.security.cert.CertPathValidator

VersionNegotiation(Matches, RequestedVersionRange):
 1. Sort Matches by Version (highest to lowest Semantic Version)
 2. For each Match in Matches:
 3. If RequestedVersionRange == "*" OR
IsVersionCompatible(Match.Version, RequestedVersionRange):
 4. Return Match
 5. End If
 6. End For
 7. Return ERROR("Incompatible Version")

Page 21

OWASP.org

IsVersionCompatible(AgentVersion, RequestedVersionRange) -> Boolean:
 // (Implement Semantic Version Range Compatibility Check here
 // Using existing library, for example: https://github.com/npm/node-
semver
 // 1. Attempt to parse requestedVersionRange as a SemVer range.
 // 2. If parsing fails, treat requestedVersionRange as a specific
SemVer version.
 // 3. Check if agentVersion is satisfied by the requestedVersionRange.
 Return SemVer.satisfies(AgentVersion, RequestedVersionRange)

IMPLEMENTATION NOTES:

Cacheability: To ensure resolvers know when to re-validate EndpointRecords, the Agent Registry
MUST include a Time-To-Live (TTL) value with each resolved Endpoint. The TTL indicates the
number of seconds for which the EndpointRecord can be cached. A recommended default TTL is
300 seconds (5 minutes), but this value MAY be adjusted based on factors such as the volatility of the
agent's configuration or the security policy of the Agent Registry. Resolvers MUST re-validate the
EndpointRecord (by calling GetAgentEndpointRecord) after the TTL has expired.

Version Negotiation and Pre-release Tags: When using SemVer.satisfies for version negotiation,
pre-release tags (e.g., -rc1, -beta) MUST be considered to have lower precedence than the
corresponding stable version. For example, version 1.0.0-rc1 would be considered lower precedence
than 1.0.0. This ensures that resolvers prefer stable versions over pre-release versions unless
explicitly requested (e.g., by specifying a pre-release version range).

3.5.4 Secure Resolution Implementation

1. Trust Anchor: The trust anchor for ANS is the Agent Registry’s Certificate Authority (CA). The Agent
Registry’s certificate is a public key certificate that is used to verify the digital signatures of the
Agent Registry’s responses. The Agent Registry’s certificate must be trusted by all agents that use
ANS.

2. Digital Signatures: Digital signatures are used to ensure the integrity and authenticity of Agent
Registry’s responses. The Agent Registry’s responses are digitally signed using the Agent Registry’s
private key. Clients, upon receiving a response, verify the signature using the corresponding public
key, confirming the integrity and authenticity of the data.

3. DNSSEC-like Security: Consider the implementation of the Domain Name System Security
Extensions (DNSSEC)-like mechanisms to validate the chain of trust. DNSSEC can increase the risk
and amplify the effects of denial of service attacks on the infrastructure. DNSSEC also increases the

Page 22

OWASP.org

number of DNS query responses because of the crypto fields that are used to verify records
properly. This means that high-volume responses enable attackers with greater attack volume
against a zone than they could if DNSSEC were not in place.Therefore, a careful evaluation of the
threat model and the potential for amplification attacks is crucial before implementing DNSSEC-like
security measures. Mitigation strategies such as rate limiting, traffic filtering, and anycast
deployment should be considered to protect the Agent Registry infrastructure from potential DoS
attacks.

4. Certificate Revocation: Implement a robust mechanism for certificate revocation. If the Agent
Registry's private key is compromised, the corresponding certificate must be revoked immediately
to prevent attackers from using the compromised key to sign malicious responses. Use standard
certificate revocation methods such as Certificate Revocation Lists (CRLs) or the Online Certificate
Status Protocol (OCSP).

5. Threat Modeling: Perform ongoing threat modeling to identify potential vulnerabilities in the secure
resolution mechanism. This will help to proactively address security concerns and ensure the
ongoing security of ANS.

Fig. 4. Full end-to-end flow (Registration, Resolution, Interaction).

3.6 ANS Challenges and Governance
Deploying ANS involves addressing key challenges:

• Naming Collisions/Squatting: Ensuring uniqueness requires a managed registration process for
names, particularly <AgentID>, <agentCapability>, and <Provider> segments. A governance model,

Page 23

OWASP.org

potentially similar to ICANN for DNS, might be needed to manage top-level agentCapabilities and
provider identifiers.

• Scalability: Supporting potentially billions of agents requires scalable registry storage (e.g.,
distributed databases, NoSQL) and efficient resolution mechanisms (e.g., distributed hash tables
(DHTs), caching layers, geographically distributed resolution points).

Governance: Establishing policies for name allocation, dispute resolution, operational practices,
and managing the trust infrastructure (CAs, RAs) is crucial for long-term stability and
trustworthiness.

.

3.7 Agent Identity
Agent identity within the ANS framework can include the following:

• Cryptographic Identity: The agent's PKI certificate provides a verifiable, CA-signed cryptographic
identity.

• Logical Identity: The ANSName provides a human-readable, structured identifier conveying
agentCapability, provider, etc.

• Protocol-Specific Identity: Agents may have identities within their native protocols (A2A Agent
Card ID, MCP tool identifiers, ACP agent URIs), stored within the protocolExtensions.

• Verifiable Claims: The registry could support attaching digitally signed attestations (e.g.,
compliance certifications, capability endorsements) to agent profiles.

• Identity linkage: ANS ecosystem leverages the structured naming convention to establish
relationships between agents. The core principle is that an agent's ANSName serves as a unique and
resolvable identifier, allowing other agents or the system itself to reference it. The Agent Registry,
upon recognizing this request, not only returns the target agent's details (binding, metadata,
certificates) but also automatically resolves the linked agents, effectively materializing the
relationship and providing all necessary information for secure and informed interaction. This
automated relationship discovery, built upon the foundation of uniquely identifiable and resolvable
agent names, significantly simplifies the orchestration and coordination of complex multi-agent
systems.

• Agent Card Validation: The integrity of Agent Cards within the ANS ecosystem is verified through
cryptographic methods, utilizing the relational patterns between agents. This process ensures that
capability declarations are validated against organizational policies. Additionally, endpoint URL
structures are enforced to comply with security standards such as TLS and proper domain

Page 24

OWASP.org

constraints.The Agent Registry oversees and connects these identity components, facilitating
verification through challenge-response protocols that rely on the agent's private key. Both the
Requesting Agent and the Registration Authority (RA) play crucial and distinct roles in this validation
process.

Requesting Agent Responsibility: The Requesting Agent has a primary and ongoing responsibility for
validating the Agent Card before every interaction. This includes:

• Cryptographic Verification: Verifying the Agent Card's digital signature to ensure it hasn't been
tampered with.

• Capability Alignment: Confirming that the agent's stated capabilities are actually what the
Requesting Agent expects and needs for the intended interaction. This might involve checking
specific input/output schemas or testing the agent's performance on sample tasks before relying on
it for critical operations.

The Requesting Agent's validation is not a one-time event; it's a continuous process that ensures the agent
remains trustworthy for each specific interaction. A failure to properly validate an Agent Card could expose
the Requesting Agent to significant security risks.

Registration Authority (RA) Responsibility: The RA performs a foundational validation of the Agent Card
during the agent registration and renewal processes. This includes:

• Signature Verification: Verifying the Agent Card's signature and the validity of the associated
certificate.

• Policy Adherence: Ensuring the agent's claimed capabilities and operational practices comply with
broader registry policies and legal requirements.

• Legitimacy Checks: Performing checks to confirm the identity and legitimacy of the agent's owner
(e.g., domain validation, organizational checks).

The RA's validation provides a baseline level of trust, but it does not replace the need for the Requesting
Agent to perform its own, more context-specific validation.

Additionally, endpoint URL structures are enforced to comply with security standards such as TLS and
proper domain constraints. The Agent Registry oversees and connects these identity components,
facilitating verification through challenge-response protocols that rely on the agent's private key.

• Agent Capability Attestation: The AI agent's identity and claimed capabilities are authenticated
through zero-knowledge proof methods. Specifically, ZKPs can be employed to allow an agent to
prove that it possesses certain capabilities (e.g., access to specific data, the ability to perform a
certain computation) without revealing how it possesses those capabilities or the underlying data

Page 25

OWASP.org

itself. For example, an agent might use a ZKP to prove it has access to a database containing
sensitive patient information without revealing the specific query it will use or any of the patient
data. This involves the agent constructing a proof, based on its private knowledge and the claimed
capabilities, that can be verified by the Agent Registry (or another agent) using only publicly
available information. The verifier gains assurance that the agent possesses the claimed
capabilities without learning any sensitive information about the agent's internal state or data.
During runtime, capabilities are dynamically validated as part of the resolution process. To further
enhance real-time verification, challenge-response mechanisms are employed. Challenge-
Response Example: Imagine an agent claims to be able to perform "Sentiment Analysis" with a
certain accuracy.

o The Agent Registry (or a verifying agent) sends the claimed "Sentiment Analysis" agent a
specific challenge: a piece of text with a known sentiment.

o The "Sentiment Analysis" agent processes the text and returns its sentiment classification
(positive, negative, neutral) and a confidence score.

o The Agent Registry (or verifying agent) compares the agent's response to the known
sentiment and the claimed accuracy.

o If the response is correct and the confidence score aligns with the agent's claimed
accuracy, the agent's capability is considered validated (for that specific challenge).

o If the response is incorrect or the confidence score is significantly lower than the claimed
accuracy, the agent's claimed capability is called into question and further challenges or
even revocation of the agent's registration might be triggered.

This challenge-response process can be repeated periodically or triggered based on certain events (e.g., a
change in the agent's code, a security alert). The challenges can be designed to test various aspects of the
agent's claimed capabilities, ensuring that it continues to function as expected over time. The Agent
Registry maintains a history of challenge-response results to track the agent's performance and reliability.

By combining ZKPs for initial capability attestation with challenge-response mechanisms for ongoing
validation, the ANS provides a robust framework for ensuring the trustworthiness of AI agents.

• Authentication Enforcement: The process involves validating the OAuth 2.0 flow to ensure the
legitimacy of authorization tokens, verifying mTLS certificates to confirm alignment with the
registered agent's identity, and checking JSON Web Tokens (JWTs) to ensure their signatures and
claims are accurate and properly authenticated.

Page 26

OWASP.org

{
 "a2aCapabilityVerification": {
 "capabilityVerification": {
 "proofMechanism": "ZKP",
 "verificationCircuit": {
 "constraints": [
 "agent.hasCapability(c) AND agent.isAuthorized(c)",
 "agent.certificate.isValid() AND
agent.certificate.notRevoked()"
],
 "proofGeneration": "Groth16",
 "verificationKey": "0x4a8f..."
 }
 },
 "rateLimit": {
 "algorithm": "TokenBucket",
 "refillRate": "100/s",
 "burstCapacity": 500,
 "perCapability": true
 }
 }
}

Agent Identity Module:

The Agent Identity module implements resource access control through capability-based security:

{
 "mcpAgentIdentity": {
 "resourceAccessControl": {
 "model": "RBAC+ABAC",
 "policyDecisionPoint": {
 "engine": "OPA",
 "evaluationMode": "distributed"
 },
 "contextAttributes": [
 "agent.role",
 "resource.classification",
 "time.window",
 "operation.sensitivity"
]
 },
 "toolRegistration": {
 "sandboxValidation": {

Page 27

OWASP.org

 "environment": "gVisor",
 "runtime": "V8Isolate",
 "memoryLimit": "256MB",
 "cpuQuota": "0.5",
 "networkPolicy": "DENY_ALL"
 }
 }

Page 28

OWASP.org

4. Request/Response Schema
for ANS Name Resolution
The following is the core JSON Schema that defines the structure for Agent Capability requests and
responses.

AgentCapabilityRequest Schema:

{
 "$schema": "http://json-schema.org/draft-07/schema#",
 "title": "AgentCapabilityRequest",
 "description": "Schema for Agent agentCapability Request",
 "type": "object",
 "properties": {
 "requestType": {
 "type": "string",
 "enum": [
 "resolve"
],
 "description": "Type of request"
 },
 "protocol": {
 "type": "string",
 "enum": [
 "a2a",
 "mcp",
 "acp"
],
 "description": "Communication Protocol"
 },
 "agentID": {
 "type": "string",
 "description": "Unique Agent Identifier"
 },
 "agentCapability": {
 "type": "string",
 "description": "Primary Agent Capability"
 },

Page 29

OWASP.org

 "provider": {
 "type": "string",
 "description": "Name of the Provider"
 },
 "version": {
 "type": "string",
 "pattern": "^(0|[1-9]\\d*)\\.(0|[1-9]\\d*)\\.(0|[1-9]\\d*)(?:-
((?:0|[1-9]\\d*|\\d*[a-zA-Z-][0-9a-zA-Z-]*)(?:\\.(?:0|[1-9]\\d*|\\d*[a-zA-Z-
][0-9a-zA-Z-]*))*))?(?:\\+([0-9a-zA-Z-]+(?:\\.[0-9a-zA-Z-]+)*))?$",
 "description": "Semantic Versioning format"
 },
 "extension": {
 "type": "string",
 "description": "Extension Metadata"
 }
 },
 "required": [
 "requestType",
 "protocol",
 "agentID",
 "agentCapability",
 "provider",
 "version"
]

AgentCapabilityResponse Schema:

{
 "$schema": "http://json-schema.org/draft-07/schema#",
 "title": "AgentCapabilityResponse",
 "description": "Schema for Agent agentCapability Response",
 "type": "object",
 "properties": {
 "Endpoint": {
 "type": "string",
 "description": "Agent address (e.g.,
a2a://translatorBot.DocumentTranslation.exampleCorp.v1.2.3.secure)"
 },
 "signature": {
 "type": "string",
 "description": "signature"
 },

Page 30

OWASP.org

 "cert": {
 "type": "string",
 "description": "PEM-encoded Certificate (strongly recommended to
use a secure vault reference instead)",
 "readOnly": false
 }
 },
 "required": [
 "Endpoint",
 "signature",
 "cert"
]

Key points regarding schemas:

• Use a JSON Schema validator library for enforcement.

• Pay attention to required fields.

• Validate all incoming/outgoing messages against this schema.

• Handle validation errors gracefully.

• Monitor evolving standards (A2A, MCP, ACP) and update schemas accordingly.

Page 31

OWASP.org

5. Protocol Adapter Layer
The Protocol Adapter Layer enables the registry to support diverse agent communication protocols without
being tightly coupled to any single one. It acts as an intermediary between the registry's core logic/storage
and the specific requirements of each protocol.

• Modularity: Adapters are implemented as distinct modules (e.g., plugins).

• Functionality: Each adapter understands how to:

o Parse protocol-specific metadata (e.g., from an A2A Agent Card) and map relevant parts
into the registry's internal representation (especially within protocolExtensions).

o Extract information from the registry record to answer protocol-specific discovery queries.

o Potentially handle protocol-specific aspects of registration or validation if needed.

• Each adapter is responsible to securely implement features defined by each protocol. Some
protocols have build in security, such as signed messages.

• Translation: Adapters primarily focus on metadata translation for discovery and registration, not on
real-time message translation between protocols during agent interaction. They help agents find
each other and verify identity; subsequent communication typically uses the agents' shared native
protocol.

• Security aspect:

o All adapter implementations must use secure, updated libraries that are commonly used to
implement the supported protocols.

o All adapter implementations must follow the security guidance by each protocol.

o Each adapter parses untrusted blobs; mandate memory-safe languages (Rust/Go) and
formal test suites.

5.1 A2A Protocol Adapter
• Parses/stores A2A Agent Card information within protocolExtensions.

• Enables discovery based on A2A agentCapabilities advertised in the card.

• Facilitates finding A2A Endpoints listed in the card.

Page 32

OWASP.org

5.2 MCP Adapter
• Parses/stores MCP Tool and Resource descriptions within protocolExtensions.

• Enables discovery of agents offering specific MCP tools/resources.

• Facilitates finding MCP-compliant Endpoints.

5.3 ACP Adapter
• Parses/stores ACP agent profiles and agentCapability advertisements within protocolExtensions.

• Supports discovery based on ACP roles or agentCapabilities.

• May assist in bootstrapping ACP delegation or orchestration workflows by providing initial agent
references.

Fig. 5. ANS Resolution Sequence as a Pre-Communication Step.

5.4 Extension Points
Adding support for a new protocol involves creating a new adapter module that implements the required
mapping and discovery logic interfaces defined by the registry framework. This ensures the registry can
evolve with the agent ecosystem.

5.5 Cross-Protocol Interoperability Limits

Page 33

OWASP.org

The registry primarily enables discovery and identity verification across protocols. An A2A agent can
discover an agent advertising MCP tools, verify its identity via PKI, and potentially interact if it also
understands MCP or uses a gateway. ANS does not automatically translate A2A tasks into MCP requests. It
provides the foundational trust and location information, but deeper semantic interoperability often
requires additional mechanisms or multi-protocol support within the agents themselves.

5.6 Protocol Adapter API Definition
Protocol Adapters are implemented as plugins that conform to the following interface (expressed in a
language-agnostic way; adapt to your chosen implementation language):

interface ProtocolAdapter {
 // Identifies the protocol supported by this adapter (e.g., "a2a", "mcp", "acp")
 String getProtocol();

 // Parses protocol-specified metadata from the protocolExtensions and maps it to
an internal registry format.
 // Returns a map of key-value pairs representing the extracted data.
 Map<String, Object> parseMetadata(Object protocolExtensions);

 // Creates a protocol-specific discovery response based on the registry record.
 Object createDiscoveryResponse(Map<String, Object> registryRecord);

 // Handles protocol-specific validation during the registration process
 Boolean validateRegistration(AgentRegistrationRequest request);
}

Important Considerations:

• This is a basic interface. More complex scenarios might require additional methods (e.g., for
handling updates, deletions, etc.).

• The Map<String, Object> type should be replaced with more specific data structures based on your
chosen implementation language and registry data model.

• Error handling should be implemented using exceptions or appropriate return codes.

SUMMARY OF ANS FUNCTIONAL LAYERS

Page 34

OWASP.org

ANS Component ANS Functional
Layer

 JSON Schema Implementation

Policy Enforcement
Engine

Request
Processing

Forward-chaining rule processor with sequential evaluation
of Agent’s certs.

PKI Governance Security
Infrastructure

Hierarchical PKI with Agent specific Cert Validation &
Integration.

A2A Protocol Engine Protocol Adapter Zero-knowledge proof capability verification

MCP Protocol Engine Protocol Adapter RBAC+ABAC access control with OPA

Consensus Engine Distributed
Governance

Analyzing Agent Signatures

ANS Audit Trail
System

Compliance Layer Deterministically generate unique Agent IDs (UUIDv5 based
on PKI public key hash) **Ref section

This technical implementation of ANS ensures that universal agent Registry/ Directory operates with
cryptographic assurance, distributed consensus for critical operations, and real-time compliance
enforcement while maintaining high performance and scalability requirements essential for enterprise AI
agent deployments.

Fig. 6. Protocol Adapters connecting the core registry to different agent protocols (A2A, MCP, ACP).

Page 35

OWASP.org

6. Security Analysis and
Considerations
6.1 MAESTRO-Based Threat Analysis
This section presents a systematic security threat analysis of the proposed ANS protocol. We identify key
potential vulnerabilities and map them onto the MAESTRO 7 Layers framework (Huang, 2025) to provide a
structured understanding of the threat landscape and the corresponding mitigation strategies integrated
into our design

MAESTRO stands for Multi-Agent Environment, Security, Threat, Risk, and Outcome, and its seven layers are:
Foundation Models, Data Operations, Agent Frameworks, Deployment and Infrastructure, Evaluation and
Observability, Security and Compliance, and Agent Ecosystem. By analyzing vulnerabilities and risks at each
architectural layer, as well as cross-layer interactions, MAESTRO enables security teams to proactively
identify, assess, and mitigate threats unique to agentic AI.

6.1.1 Threat: Agent Impersonation
• Risk: An adversary attempts to impersonate a legitimate, registered agent inside the ecosystem.

• Mitigation Strategy: Mandatory implementation of PKI. Verification of agent identity through
validation of agent-specific digital certificates (Cert) issued by a trusted CA. Agent must prove
possession of the private key.

• Formal Check:

o Agent MUST provide valid Cert on registration.

o RA MUST verify Cert against trusted CA.

o All communication MUST be digitally signed; recipient MUST verify signature using public
key from Cert.

o See Section 3.2 (PKI Integration) and 3.7 (Agent Identity).

• MAESTRO Layer Mapping: Layer 7 (Agent Ecosystem) - Agent

• Impersonation/Identity Attack.

6.1.2 Threat: Registry Poisoning

Page 36

OWASP.org

• Risk: An adversary tries to inject malicious data into the Agent Registry (e.g., corrupting
agentCapabilities or Endpoints).

• Mitigation Strategy: Strict RA validation during registration/renewal; cryptographic signing of
registry responses (secure resolution); stringent database access controls. Secure resolution
ensures responses are signed by the Agent Registry's private key, verifiable by clients.

• Formal Check:

o RA validation procedures (Section 3.1).

o Secure, authenticated registry responses (Section 3.5.4 leveraging PKI Section 3.2).

o Database access controls (Infrastructure L4 / Data L2).

• MAESTRO Layer Mapping:

o Layer 7 (Agent Ecosystem) - Compromised Agent Registry, Malicious Agent Discovery.

o Layer 6 (Security and Compliance) - RA validation policies, cryptographic signing.

o Layer 4 (Deployment and Infrastructure) / Layer 2 (Data Operations) - Database access
controls.

6.1.3 Threat: Man-in-the-Middle (MitM) Attacks
• Risk: An adversary modifies communications between system components (agent-agent, agent-

registry, agent-RA/CA).

• Mitigation Strategy: Message authenticity/integrity via digital signatures (agent's PKI private key).
Secure transport (e.g., mTLS) is best practice but PKI signing is the core mechanism discussed.
Formal resolution algorithm (3.5.3) enforces response integrity.

• Formal Check: PKI signing (Section 3.2).

• MAESTRO Layer Mapping:

o Layer 4 (Deployment and Infrastructure) - Targets communication channels. Secure
transport operates here.

o Layer 6 (Security and Compliance) - PKI framework providing keys/certs managed via L6.

6.1.4 Threat: Denial of Service (DoS) / Distributed Denial of Service (DDoS)

Page 37

OWASP.org

• Risk: Adversary attempts to incapacitate Agent Registry, RA, CA, or resolution services via traffic
flooding or resource exhaustion.

• Mitigation Strategy: Resilience through distributed implementation design. Standard operational
defenses (rate limiting, DDoS protection services). Formal resolution algorithms may include DoS
limits.

• Formal Check: Architectural design (distributed options in Section 8).

• MAESTRO Layer Mapping:

o Layer 4 (Deployment and Infrastructure) - DoS attacks target L4 availability. Architectural
resilience is L4 design.

o Layer 7 (Agent Ecosystem) - Impact felt at L7 (disrupted discovery/interaction).

6.2 Additional Security Controls and Considerations
Implementing ANS requires thorough threat modeling and comprehensive security controls.

6.2.1 PKI Security Controls
• Certificate Revocation: Robust CRL or OCSP mechanisms are essential.

• Secure Key Storage: Agent private keys must be protected (HSMs, secure enclaves, OS key stores).
Compromise requires immediate revocation/re-issuance.

• Registry Access Control: Strict authentication/authorization for registry management (RA) and
potentially querying.

• RA Validation: Rigorous process to prevent malicious registration (domain validation, organizational
checks, manual review).

6.2.2 ANS-Specific Security Controls
• Resolution Integrity: Use DNSSEC-like mechanisms or signed responses to prevent ANS

Manipulation/Spoofing.

• DoS Mitigation: Standard defenses (rate limiting, firewalls, anycast) for resolution Endpoints.

• CA Security: Standard CA best practices (offline roots, audits, HSMs) are mandatory. Consider using
established, trusted CAs.

• Sybil Attack Resistance: Registration processes should make creating fake identities
difficult/costly.

Page 38

OWASP.org

6.2.3 Protocol Integration Security
• Protocol-Specific Security: Leverage security features within A2A, MCP, ACP (e.g., OAuth,

capability tokens) for agent-to-agent communication post-discovery.

• Governance and Trust Framework: Clear policies, liability, and trust anchors are essential for
adoption.

6.2.4 Side-Channel Deanonymization and Mitigation
The process of querying the Agent Registry for specific agentCapabilities could unintentionally reveal
sensitive information about the querier's intent, business objectives, or operational profile. To mitigate this
risk, the implementation must prioritize:

• Private Information Retrieval (PIR) implementation: To enable retrieval of information from the
Agent Registry without revealing which information is being retrieved. Evaluate various PIR libraries
to determine the most secure and efficient implementation based on use case. Prioritize the most
performant and secure library.

• Anonymized Query Relays: Implementing query relays to hide the origin of the requests and prevent
ANS Registry from seeing what agents are querying for what capabilities.

• Differential Privacy for Aggregated Query Data: Anonymize all data before sending to a 3rd party,
ensuring that PII isn't included in the request.

• Query Pattern Analysis: Analyzing query patterns for anomalous behavior, and block queries that
look suspicious.

• Rate Limiting: Implementing rate limiting to prevent potential DDOS attacks, and help obfuscate
queries.

• Auditing: Ensure all security implementations are audited regularly.

• Privacy Controls for Query and Response Data: Implementation of data anonymization techniques to
enhance privacy compliance.

Page 39

OWASP.org

7. Implementation
Considerations
The Agent Registry can be implemented using various patterns:

• Centralized: Simple management, but single point of failure/bottleneck. Suitable for smaller/private
deployments.

• Distributed: Offers resilience and scalability. Options:

o Distributed Hash Table (DHT): Scalable P2P lookup, complex state management.

o Distributed Database: Technologies like Cassandra, CockroachDB (strong/eventual
consistency). Requires coordination (Paxos, Raft).

o Blockchain/DLT: Smart contracts as Registry Agent, transactions validated/recorded on-
chain.

• Federated: Independent registries interoperate (organizational/geographic boundaries). Requires
inter-registry protocols and trust. To enable seamless cross-registry discovery and interaction,
federated registries require standardized mechanisms for verifying agent identities and resolving
ANSNames across domains. This necessitates agreed-upon trust anchors (e.g., mutually trusted
Certificate Authorities), standardized metadata formats for agent descriptions, and well-defined
inter-registry communication protocols for querying and exchanging agent information. Without
these elements, a federated system risks becoming a collection of isolated silos, hindering
interoperability.

• Hybrid: Combines elements (e.g., centralized RA/CA, distributed/replicated read nodes). Caching
layers (Redis, Memcached) improve performance. Requires careful consistency management.

The Agent Registry can be implemented using various patterns. The choice depends on scale, trust model,
performance requirements, administrative overhead, and cost. The Protocol Adapter Layer suits a plugin
architecture. Below is a decision matrix to help guide the selection:

Decision Matrix:

Feature Centralized Distributed
(Cassandra)

Distributed
(DHT)

Blockchain/DLT Federated

Page 40

OWASP.org

Consistency Strong Tunable
(Eventual)

Eventual Strong Tunable
(Eventual)

Latency Low Medium Medium to
High

High Medium to
High

Scalability Limited High Very High Limited High

Fault
Tolerance

Low High High High Medium

Security Medium Medium Medium High Medium

Operational
Cost

Low Medium Medium High Medium

Complexity Low Medium High High Medium

Implementation Patterns:

• Centralized: Simple management, but a single point of failure and a potential bottleneck. Suitable
for smaller or private deployments.

• Distributed (Cassandra, CockroachDB): Offers resilience and scalability. Technologies like
Cassandra provide tunable consistency (eventual). Requires coordination mechanisms.

• Distributed (DHT): Scalable P2P lookup, complex state management. Suitable for very large-scale
deployments with relaxed consistency requirements.

• Blockchain/DLT: Smart contracts as Registry Agents, transactions validated and recorded on-
chain. Offers high security and auditability but suffers from high latency, limited scalability, and
significant write amplification. Write amplification refers to the fact that a single write operation to
the blockchain can result in multiple write operations to the underlying storage, significantly
increasing storage costs and reducing performance.

• Federated: Independent registries interoperate (organizational or geographic boundaries). Requires
inter-registry protocols and trust management.

Page 41

OWASP.org

• Hybrid: Combines elements (e.g., centralized RA/CA, distributed/replicated read nodes). Caching
layers (Redis, Memcached) improve performance. Requires careful consistency management.

Key Considerations:

• Consistency vs. Latency: Strong consistency (e.g., in a centralized system) means that all reads see
the most recent write, but it can increase latency. Eventual consistency (e.g., in Cassandra or a DHT)
allows for lower latency and higher scalability, but reads may not always reflect the most recent
write.

• Write Amplification (Blockchain): Be aware of the significant write amplification in blockchain
solutions. This can lead to high storage costs and performance bottlenecks.

• Operational Cost: Consider the operational cost of each pattern, including hardware, software, and
personnel costs. Blockchain solutions, in particular, can be expensive to operate due to the need for
specialized hardware and expertise.

• Complexity: Distributed systems, especially those based on DHTs or blockchains, are more complex
to design, implement, and maintain than centralized systems.

Page 42

OWASP.org

8. Future Considerations
This proposal lays the groundwork; future work should explore:

• Prototype Implementation: Build and evaluate a working ANS prototype (See GitHub:
https://github.com/kenhuangus/dns-for-agents/).

• Explore an innovative bootstrap model for distributed trust infrastructure, focusing on a
foundation-led root governance approach with delegated sub-spaces (similar to Cloud Native
Computing Foundation certificate transparency roots), alongside a comprehensive funding and fee
schedule that creates a sustainable, flexible ecosystem for trust delegation and verification across
different organizational scales and technological domains.

• Performance & Scalability: Benchmark resolution latency, registration throughput, and scalability
under load.

• Advanced Cryptography: Investigate privacy-preserving techniques (e.g., zero-knowledge proofs)
for capability advertisement/selective disclosure.

• Formal Verification: Mathematically model and verify security properties of registration/resolution
protocols.

• Detailed Governance Model: Develop comprehensive policies for naming, CA/RA operations,
disputes, and trust framework evolution.

• Platform Integration: Demonstrate integration with agent frameworks (LangChain, AutoGen,
CrewAI) and cloud platforms.

• Semantic Interoperability: Research mechanisms leveraging ANS metadata for deeper cross-
protocol communication (standardized capability ontologies, translation gateways).

• Reputation Systems: Integrate reputation scores/endorsements to enhance trust.

• ANS agentCapability Negotiation and Binding Protocol: Develop standardized protocols for agents
to negotiate capabilities post-resolution (capability mapping taxonomies, binding, and quality of
service).

• Draft a governance white-paper detailing name allocation, fee model, dispute arbitration, and root
CA stewardship.

9. Conclusion

Page 43

OWASP.org

ANS offers a foundational infrastructure for a more secure, trustworthy, and interconnected agentic AI
ecosystem. Its broad impact includes:

• Enhancing Interoperability: Protocol-agnostic directory facilitates seamless communication
between diverse agents.

• Boosting Trust and Security: PKI integration enhances trust for sensitive domains (finance,
healthcare, cybersecurity).

• Accelerating Innovation: Lowers barriers by providing common discovery/identity, letting
developers focus on agent solutions.

• Facilitating Autonomous Systems: Critical enabler for systems needing dynamic, secure discovery
and interaction (autonomous vehicles, smart cities).

• Powering Secure AI Marketplaces: Foundation for marketplaces with verifiable agent
identities/capabilities.

The modular Protocol Adapter Layer ensures extensibility. ANS provides foundational trust and discovery,
enabling agents on different standards to find and securely contact each other. While challenges remain
(governance, scalability, semantic interoperability), ANS is a necessary step towards a robust agentic AI
ecosystem.

Page 44

OWASP.org

Acknowledgements
The authors acknowledge the contributions of the communities and organizations developing foundational
agent communication standards, including Google (A2A), Anthropic (MCP), IBM (ACP), and the broader AI
research community.

Contributors

Ken Huang, DistributedApps.ai, CSA
Idan Habler, PhD, Intuit
Vineeth Sai Narajala, AWS
Akram Sheriff, Cisco Systems

Coordinated and reviewed by

• Ron F. Del Rosario (ASI co-lead), SAP
• John Sotiropoulos (ASI co-lead), Kainos

ASI Review Board

Alejandro Saucedo - Chair of ML Security Project at
Linux Foundation, UN AI Expert, AI Expert for Tech
Policy, European Commission
Apostol Vassilev - Adversarial AI Lead, NIST
Chris Hughes - CEO, Aquia
Hyrum Anderson - CTO, Robust Intelligence
Steve Wilson - OWASP Top 10 for LLM Applications
and Generative AI Project Lead and Chief Product
Officer, Exabeam
Scott Clinton - OWASP Top 10 for LLM Applications
and Generative AI Project Co-Lead
Vasilios Mavroudis- Principal Research Scientist
and Theme Lead, the Alan Turing Institute
Josh Collyer, Principal Security Researcher, Theme
Lead
Egor Pushkin, Chief Architect, Data and AI at Oracle
Cloud

Page 45

OWASP.org

Page 46

OWASP.org

OWASP GenAI Security Project
Sponsors

We appreciate our Project Sponsors, funding contributions to help support the objectives of the
project and help to cover operational and outreach costs augmenting the resources provided by the
OWASP.org foundation. The OWASP GenAI Security Project continues to maintain a vendor neutral and
unbiased approach. Sponsors do not receive special governance considerations as part of their
support.

Sponsors do receive recognition for their contributions in our materials and web properties. All
materials the project generates are community developed, driven and released under open source and
creative commons licenses. For more information on becoming a sponsor, visit the Sponsorship
Section on our Website to learn more about helping to sustain the project through sponsorship.

Project Sponsors:

Sponsor list, as of publication date. Find the full sponsor list here.

Page 47

OWASP.org

Project Supporters

Project supporters lend their resources and expertise to support the goals of the project.

Accenture
AddValueMachine Inc
Aeye Security Lab Inc.
AI informatics GmbH
AI Village
aigos
Aon
Aqua Security
Astra Security
AVID
AWARE7 GmbH
AWS
BBVA
Bearer
BeDisruptive
Bit79
Blue Yonder
BroadBand Security, Inc.
BuddoBot
Bugcrowd
Cadea
Check Point
Cisco
Cloud Security Podcast
Cloudflare
Cloudsec.ai
Coalfire

Cobalt
Cohere
Comcast
Complex Technologies
Credal.ai
Databook
DistributedApps.ai
DreadNode
DSI
EPAM
Exabeam
EY Italy
F5
FedEx
Forescout
GE HealthCare
Giskard
GitHub
Google
GuidePoint Security
HackerOne
HADESS
IBM
iFood
IriusRisk
IronCore Labs
IT University Copenhagen

Kainos
KLAVAN
Klavan Security Group
KPMG Germany FS
Kudelski Security
Lakera
Lasso Security
Layerup
Legato
Linkfire
LLM Guard
LOGIC PLUS
MaibornWolff
Mend.io
Microsoft
Modus Create
Nexus
Nightfall AI
Nordic Venture Family
Normalyze
NuBinary
Palo Alto Networks
Palosade
Praetorian
Preamble
Precize
Prompt Security

PromptArmor
Pynt
Quiq
Red Hat
RHITE
SAFE Security
Salesforce
SAP
Securiti
See-Docs & Thenavigo
ServiceTitan
SHI
Smiling Prophet
Snyk
Sourcetoad
Sprinklr
stackArmor
Tietoevry
Trellix
Trustwave SpiderLabs
U Washington
University of Illinois
VE3
WhyLabs
Yahoo
Zenity

Sponsor list, as of publication date. Find the full sponsor list here.

Page 48

OWASP.org

References
P. Mockapetris, “Domain names - implementation and specification,” RFC Editor, RFC 1035, Nov. 1987. [Online]. Available:
https://www.rfc-editor.org/info/rfc1035

S. Cheshire and M. Krochmal, “DNS-Based Service Discovery,” RFC Editor, RFC 6763, Feb. 2013. [Online]. Available: https://www.rfc-
editor.org/info/rfc6763

R. Surapaneni, M. Jha, M. Vakoc, and T. Segal, “Announcing the Agent2Agent Protocol (A2A),” Google for Developers Blog, Apr. 2025,
accessed: 2025-04-27. [Online]. Available: https://developers.googleblog.com/en/a2a-a-new-era-of-agent-interoperability/

Agent2Agent Protocol Specification Authors, “Agent2Agent (A2A) Protocol Specification,” https://github.com/google/A2A, 2025,
accessed: 2025-04-27.

Anthropic, “Model context protocol (MCP),” https://www.anthropic.com/news/model-context-protocol, 2024, accessed: 2025-04-27.

Model Context Protocol Specification Authors, “Model Context Protocol (MCP) Specification,”
https://modelcontextprotocol.io/specification/2025-03-26, Mar. 2025, accessed: 2025-04-27.

P. Schmid, “MCP Introduction,” https://www.philschmid.de/mcp-introduction, 2025, accessed: 2025-04-27.

IBM Research, “(placeholder for anticipated ibm acp publication/specification link),” 2025, anticipated Publication

Foundation for Intelligent Physical Agents (FIPA), “FIPA Agent Communication Language Specifications,” FIPA, Tech. Rep., 2002.
[Online]. Available: http://www.fipa.org/repository/aclspecs.html

D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk, “Internet x.509 public key infrastructure certificate and
certificate revocation list (crl) profile,” RFC Editor, RFC 5280, May 2008. [Online]. Available: https://www.rfc-editor.org/info/rfc5280

E. T. Bray, “The javascript object notation (JSON) data interchange format,” RFC Editor, RFC 7159, Mar. 2014. [Online]. Available:
https://www.rfc-editor.org/info/rfc7159

S. Santesson, M. Myers, R. Ankney, A. Malpani, S. Galperin, and C. Adams, “X.509 Internet Public Key Infrastructure Online Certificate
Status Protocol - OCSP,” RFC Editor, RFC 6960, Jun. 2013. [Online]. Available: https://www.rfc-editor.org/info/rfc6960

I. Habler, K. Huang, V. S. Narajala, and P. Kulkarni, “Building a secure agentic AI application leveraging A2A protocol,” arXiv preprint
arXiv.2504.16902, 2025. [Online]. Available: https://www.arxiv.org/abs/2504.16902

V. S. Narajala and I. Habler, “Enterprise-Grade Security for the Model Context Protocol (MCP): Frameworks and Mitigation Strategies,”
arXiv preprint arXiv:2504.08623, 2025. [Online]. Available: https://arxiv.org/abs/2504.08623

K. Huang, A. Sheriff, J. Sotiropoulos, R. F. Del, and V. Lu, “Multi-agentic system threat modelling guide OWASP GenAI security project,”
Apr. 2025. [Online]. Available: https://www.researchgate.net/publication/391204915_Multi-
Agentic_system_Threat_Modelling_Guide_OWASP_GenAI_Security_Project

V. S. Narajala, K. Huang, and I. Habler, “Securing genai multi-agent systems against tool squatting: A zero trust registry-based
approach,” arXiv.org, 2025. [Online]. Available: https://arxiv.org/abs/2504.19951

Page 49

OWASP.org

Appendix A: Complete
Request/Response Schemas
The detailed JSON Schema documents for registry interactions are maintained externally. Please ensure
these schemas are well-commented and validated in any implementation.

• AgentRegistrationRequest Schema:
https://github.com/kenhuangus/dns-for-
agents/blob/main/agent_registration_request_schema.json

• AgentRenewalRequest Schema:
https://github.com/kenhuangus/dns-for-agents/blob/main/agent_renewal_request_schema.json

• AgentRegistrationResponse Schema:
https://github.com/kenhuangus/dns-for-
agents/blob/main/agent_registration_response_schema.json

• AgentRenewalResponse Schema:
https://github.com/kenhuangus/dns-for-agents/blob/main/agent_renewal_response_schema.json

• AgentCapabilityRequest Schema:
https://github.com/kenhuangus/dns-for-agents/blob/main/agent_capability_request.schema.json

• AgentCapabilityResponse Schema:
https://github.com/kenhuangus/dns-for-
agents/blob/main/agent_capability_response.schema.json

Page 50

OWASP.org

Appendix B: Glossary of Terms
- Agent Name Service (ANS)

• A2A (Agent2Agent Protocol): A communication protocol developed by Google Cloud for
standardizing inter-agent communication, designed to bridge different agent frameworks.

• ACP (Agent Communication Protocol): A protocol designed by IBM Research to standardize how
agents communicate, enabling automation, collaboration, UI integration, and developer tooling.

• Agent: An autonomous software entity capable of performing tasks, making decisions, and
interacting with other agents or systems.

• Agent Identity: The verifiable identity of an agent within the ANS ecosystem, comprising
cryptographic identity (PKI certificate), logical identity (ANSName), and protocol-specific identities.

• Agent Registry: A database storing registered agent information including capabilities, security
policies, PKI certificates, protocol-specific metadata, and registration/renewal timestamps.

• agentCapability: A specific function, service, or skill that an agent can perform or provide to other
agents or users.

• ANS (Agent Name Service): A universal directory service framework that enables secure discovery
and interoperability between AI agents across different protocols and platforms.

• ANSName: A structured identifier for agents in the ANS ecosystem, following the format:
Protocol://AgentID.agentCapability.Provider.vVersion.Extension.

• CA (Certificate Authority): A trusted entity that issues and manages digital certificates that bind
public keys to entities (like agents) to establish a chain of trust in the ANS ecosystem.

• Certificate Chain Verification: The process of validating a certificate by checking the chain of trust
from the certificate up to a trusted root certificate authority.

• Certificate Revocation: The process of invalidating a certificate before its expiration date, typically
due to a key compromise or when an agent is deregistered.

• Certificate Revocation List (CRL): A list of digital certificates that have been revoked before their
scheduled expiration date and should no longer be trusted.

• CRL (Certificate Revocation List): A mechanism used to check if a certificate has been revoked and
is no longer valid.

Page 51

OWASP.org

• CSR (Certificate Signing Request): A message sent by an agent to a Certificate Authority to apply
for a digital certificate.

• Digital Signature: A mathematical scheme for verifying the authenticity and integrity of digital
messages or documents.

• Distributed Hash Table (DHT): A decentralized distributed system that provides a lookup service
similar to a hash table, used as one possible implementation strategy for the Agent Registry.

• DNS (Domain Name System): The traditional system that translates human-readable domain names
to IP addresses, which serves as a partial model for ANS but lacks the capability-oriented nature of
ANS.

• DNS-SD (DNS-Based Service Discovery): An extension to DNS that enables automatic discovery of
services available on a local network.

• Endpoint: A resolvable network address, service binding, or metadata document that allows agents
to connect and communicate with each other.

• Extension: A field in the ANSName that holds deployment-specific or provider-defined metadata.

• Interoperability: The ability of different agent systems or protocols to exchange information and
use that information effectively across platforms.

• MAESTRO (7 Layers): A threat modeling framework for agentic AI consisting of 7 layers, used to
structure the security analysis of ANS.

• MAS (Multi-Agent Systems): Systems composed of multiple interacting intelligent agents that can
cooperate, coordinate, or compete to solve problems.

• MCP (Model Context Protocol): A protocol developed by Anthropic focused on simplifying the
integration of AI models with external tools and data sources.

• OCSP (Online Certificate Status Protocol): An internet protocol used for obtaining the revocation
status of X.509 digital certificates as an alternative to CRLs.

• PKI (Public Key Infrastructure): A set of roles, policies, hardware, software, and procedures needed
to create, manage, distribute, use, store, and revoke digital certificates and manage public-key
encryption.

• Protocol Adapter Layer: A component in the ANS architecture that translates between the
registry's internal representation and protocol-specific formats.

Page 52

OWASP.org

• protocolExtensions: A field within the ANS schema that acts as a container for protocol-specific
data.

• Provider: An organization or entity that offers or maintains agents in the ANS ecosystem.

• RA (Registration Authority): An entity that verifies agent registration and renewal requests,
interacts with the CA to issue certificates, and manages the agent lifecycle.

• Registry Poisoning: A security threat where an adversary attempts to inject malicious data into the
Agent Registry.

• Semantic Versioning: A versioning scheme with a format of MAJOR.MINOR.PATCH used to indicate
compatibility and changes in agent versions.

• Service Discovery: The process of automatically finding available services in a network.

• Signature Verification: The process of checking that a digital signature is valid and was created by
the claimed signer.

• Sybil Attack: An attack where a malicious actor creates multiple fake identities to gain
disproportionate influence in a network.

• Trust Anchor: The root of trust in a PKI system, typically a certificate authority whose certificate is
implicitly trusted.

• Version Negotiation: The process where agents determine which protocol version to use when
communicating, based on compatibility and preferences.

• VerifyCertChain: A function that checks the validity of a certificate by tracing its chain of trust back
to a trusted certificate authority.

• VerifySignature: A function that validates a digital signature against a message and a public key to
confirm authenticity and integrity.

