
NIST Special Publication 800
NIST SP 800-226

Guidelines for Evaluating Differential
Privacy Guarantees

Joseph P. Near 
David Darais 

Naomi Lefkovitz 
Gary S. Howarth 

This publication is available free of charge from: 
https://doi.org/10.6028/NIST.SP.800‐226 

https://doi.org/10.6028/NIST.SP.800-226
https://crossmark.crossref.org/dialog/?doi=10.6028/NIST.SP.800-226


NIST Special Publication 800
NIST SP 800-226

Guidelines for Evaluating Differential
Privacy Guarantees

Joseph P. Near 
University of Vermont 

David Darais 
Galois, Inc. 

Naomi Lefkovitz* 
Gary S. Howarth 

Applied Cybersecurity Division 
Information Technology Laboratory 

* Former NIST employee; all work for this
publication was done while at NIST. 

This publication is available free of charge from: 
https://doi.org/10.6028/NIST.SP.800‐226 

March 2025 

U.S. Department of Commerce 
Howard Lutnick, Secretary 

National Institute of Standards and Technology 
Craig Burkhardt, Acting NIST Director and Deputy Under Secretary of Commerce for Standards and Technology 

https://doi.org/10.6028/NIST.SP.800-226


Certain commercial equipment, instruments, or materials, commercial or non‐commercial, are identified in 
this paper in order to specify the experimental procedure adequately. Such identification does not imply 
recommendation or endorsement of any product or service by NIST, nor does it imply that the materials or 
equipment identified are necessarily the best available for the purpose. 

There may be references in this publication to other publications currently under development by NIST in 
accordance with its assigned statutory responsibilities. The information in this publication, including 
concepts and methodologies, may be used by federal agencies even before the completion of such 
companion publications. Thus, until each publication is completed, current requirements, guidelines, and 
procedures, where they exist, remain operative. For planning and transition purposes, federal agencies 
may wish to closely follow the development of these new publications by NIST. 

Organizations are encouraged to review all draft publications during public comment periods and provide 
feedbac to NIST. Many NIST cybersecurity publications, other than the ones noted above, are available at 
https://csrc.nist.gov/publications. 

NIST Technical Series Policies
Copyright, Use, and Licensing Statements 
NIST Technical Series Publication Identifier Syntax 

Publication History
Approved by the NIST Editorial Review Board on 2024‐10‐30 

How to cite this NIST Technical Series Publication:
Near JP, Darais D, Lefkovitz N, Howarth GS (2025) Guidelines for Evaluating Differential Privacy 
Guarantees. (National Institute of Standards and Technology, Gaithersburg, MD), NIST Special Publication 
(SP) NIST SP 800‐226. https://doi.org/10.6028/NIST.SP.800‐226 

Author ORCID iDs
Joseph P. Near: 0000‐0003‐2314‐0287 
David Darais: 0000‐0002‐3203‐3742 
Gary S. Howarth: 0000‐0002‐3587‐0546 

Contact Information
Privacyeng@nist.gov 

Additional Information
Additional information about this publication is available at https://csrc.nist.gov/pubs/sp/800/226/final, 
including related content, potential updates, and document history. 

All comments are subject to release under the Freedom of Information Act (FOIA).

https://csrc.nist.gov/publications
https://doi.org/10.6028/NIST-TECHPUBS.CROSSMARK-POLICY
https://www.nist.gov/nist-research-library/nist-technical-series-publications-author-instructions#pubid
mailto:Privacyeng@nist.gov
https://csrc.nist.gov/pubs/sp/800/226/final
https://doi.org/10.6028/NIST.SP.800-226


NIST SP 800‐226 Guidelines for Evaluating 
March 2025 Differential Privacy Guarantees 

Abstract 

This publication describes differential privacy — a mathematical framework that quantifies 
privacy loss to entities when their data appears in a dataset. The primary goal of this 
publication is to help practitioners of all backgrounds better understand how to think about 
differentially private software solutions. Multiple factors for consideration are identified in 
a differential privacy pyramid along with several privacy hazards, which are common pitfalls 
that arise as the mathematical framework of differential privacy is realized in practice. 

Keywords 

anonymization; data analytics; data privacy; de‐identification; differential privacy; privacy; 
privacy‐enhancing technologies. 

Reports on Computer Systems Technology 

The Information Technology Laboratory (ITL) at the National Institute of Standards and 
Technology (NIST) promotes the U.S. economy and public welfare by providing technical 
leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, 
test methods, reference data, proof of concept implementations, and technical analyses 
to advance the development and productive use of information technology. ITL’s respon‐
sibilities include the development of management, administrative, technical, and physical 
standards and guidelines for the cost‐effective security and privacy of other than national 
security‐related information in federal information systems. The Special Publication 800‐
series reports on ITL’s research, guidelines, and outreach efforts in information system 
security, and its collaborative activities with industry, government, and academic organi‐
zations. 

Supplemental Content 

This publication comes with a companion package of Python Jupyter notebooks that illus‐
trate some of the concepts described in the publication, including how to achieve differen‐
tial privacy, situations where certain differentially private algorithms could magnify bias, 
and utility analysis of differentially private algorithms. Supplemental content for this pub‐
lication can be found at 
https://github.com/usnistgov/PrivacyEngCollabSpace/tree/master/tools/de‐identificatio 
n/NIST‐SP‐800‐226‐SupplementalMaterial/. 
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Executive Summary 

Data analytics is an essential tool to help organizations make sense of the enormous vol‐
ume of data being generated by information technologies. Many organizations — in gov‐
ernment, industry, academia, or civil society — use data analytics to improve research, 
develop more effective services, combat fraud, and inform decision‐making to achieve mis‐
sion or business objectives. However, privacy risks can arise when the data being analyzed 
relates to or affects individuals, which may limit or prevent organizations from realizing 
the full potential of data analysis. Privacy‐Enhancing Technologies (PETs) can help mitigate 
privacy risks while enabling more uses of data. 

This publication describes differential privacy — a PET that quantifies privacy risk to individ‐
uals when their data appears in a dataset. Differential privacy was first defined in 2006 as 
a theoretical framework and is still making the transition from theory to practice. This pub‐
lication is intended to help those who need to manage the risks of data analytics and data 
sharing — including business owners, product managers, privacy personnel, security per‐
sonnel, software engineers, data scientists, and academics — understand, evaluate, and 
compare differential privacy guarantees. In particular, this publication highlights privacy 
hazards that practitioners should consider carefully. 

This publication is organized into four sections. Sec. 2 defines differential privacy, Sec. 3 
describes techniques for achieving differential privacy and its properties, and Sec. 4 covers 
important related concerns for deployments of differential privacy. A supplemental, inter‐
active software archive is also included to increase understanding of differential privacy 
and techniques for achieving it. 

The Differential Privacy Guarantee (Sec. 2) 

Differential privacy promises that a reduction in privacy caused by a data analysis or pub‐
lished dataset will be bounded for all individuals about whom data are found in the dataset. 
In other words, any privacy reduction to an individual that results from a differentially pri‐
vate analysis could have happened even if the individual had not contributed their data. 
This section introduces differential privacy, describes its properties, explains how to reason 
about and compare differential privacy guarantees, describes how the differential privacy 
guarantee can impact real‐world outcomes, and highlights potential hazards in defining 
and evaluating these guarantees. 

Differentially Private Algorithms (Sec. 3) 

Differential privacy is generally achieved by adding random noise to analysis results. More 
noise yields better privacy but degrades the utility of the result. This privacy‐utility tradeoff 
can make it difficult to achieve both high utility and strong privacy protection. Statistical 
disclosure control techniques, where records or features are redacted based on their per‐

1 



NIST SP 800‐226 Guidelines for Evaluating 
March 2025 Differential Privacy Guarantees 

ceived identifiability, can sometimes also create or magnify systemic, human, or statistical 
bias in results—as is generally true for statistical disclosure control—so care must be taken 
to understand and mitigate these impacts. 

This section describes algorithms for a wide range of data processing scenarios. Differen‐
tially private algorithms exist for analytics queries (e.g., counting, histograms, summation, 
and averages), regression tasks, machine learning tasks, synthetic data generation, and 
the analysis of unstructured data. Implementing differentially private algorithms requires 
significant expertise primarily due to a variety of factors which includes the use of random 
sampling. The randomized aspects of the algorithms can be difficult to get right and easy 
to get wrong, and—like implementing cryptography—it is best to use existing rigorously 
validated libraries when possible. 

Deploying Differential Privacy (Sec. 4) 

Differential privacy protects privacy of data subjects in the context of intentional differen‐
tially private data releases, but does not protect data as it is collected, stored, and analyzed 
in raw form. This section describes practical concerns about deploying differentially private 
analysis techniques, including the trust model, which describes potential malicious parties 
and steps they might take; implementation challenges that can cause unexpected privacy 
failures; and additional security concerns and data collection exposure. For example, sen‐
sitive data must be stored securely with strong access control policies and mechanisms— 
following industry best practices—or not stored at all. A data breach that results in the 
unauthorized release of sensitive raw data records will nullify any differential privacy guar‐
antee that has been established for the leaked records; however the differential privacy 
guarantee will still hold for all records that were not leaked. 

Toward Standardization, Certification, and Evaluation 

This publication is intended to be a first step toward building standards for differential 
privacy guarantees to ensure that deployments of differential privacy provide robust real‐
world privacy protections. In particular, a standard for differential privacy guarantees 
should prescribe a methodology for setting parameters that addresses all of the privacy 
hazards described in this publication, and that also balances the strength of privacy guar‐
antees against the anticipated benefits of publishing the data. Such a standard would allow 
for the construction of tools to evaluate differential privacy guarantees and the systems 
that provide them as well as the certification of systems that conform with the standard. 
The certification of differential privacy guarantees is particularly important given the chal‐
lenge of communicating these guarantees to non‐experts. A thorough certification process 
would provide non‐experts with an important signal that a particular system will provide 
robust guarantees without requiring them to understand the details of those guarantees. 

2 



NIST SP 800‐226 Guidelines for Evaluating 
March 2025 Differential Privacy Guarantees 

Differential Privacy and Policy 

Since differential privacy is the only rigorous mathematical definition of privacy at this 
time, it is likely to play an important role in the release of official statistics. This document 
is not intended to provide guidance to U.S. federal (and other government) agencies on 
navigating differential privacy’s interactions with law, regulation, and policy. U.S. federal 
agencies, especially statistical agencies, have important responsibilities to release accurate 
information with potentially differing definitions of accuracy. 

3 
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1. Introduction 

Data analytics is an essential tool to help organizations make sense of the enormous vol‐
ume of data being generated by information technologies. Many entities in government, 
industry, academia, or civil society use data analytics to improve research, develop more 
effective services, combat fraud, and inform decision‐making to achieve mission or busi‐
ness objectives. However, when the data being analyzed relates to or affects individuals, 
privacy risks can arise. These privacy risks can limit or prevent entities from realizing the 
full potential of data. Privacy Enhancing Technologies (PETs) can help mitigate privacy risks 
while enabling more uses of data. 

This publication discusses differential privacy—a PET that quantifies privacy loss to entities 
when their data appears in a dataset. Differential privacy was first defined in 2006 as a 
theoretical framework. In recent years, it has been successfully deployed in production 
systems by large technology corporations, and the U.S. Census Bureau, for which the merits 
of differential privacy are well documented [1]. However, differential privacy is still in the 
process of making the transition from theory to practice. Although production systems 
exist that drive large‐scale deployments, the software ecosystem for differential privacy is 
still in its infancy. This makes it challenging for practitioners who do not specialize in PETs 
to deploy it easily. 

New software tools for differential privacy have emerged to make deploying differentially 
private systems easier. However, to use these tools effectively, practitioners must under‐
stand how to interpret properly the mathematical properties of differential privacy in use 
by understanding how underlying assumptions translate to real world privacy harms. 

The primary goal of this publication is to help those who need to manage the risks of data 
analytics and data sharing—including business owners, product managers, privacy and se‐
curity personnel, software engineers, data scientists, and academics—better understand 
how to think about differentially private software solutions. 

This publication identifies common pitfalls that arise as the framework of differential pri‐
vacy is realized in practice. While some technical details are discussed to give appropriate 
context for these hazards, dense mathematical formulas are isolated to figures. An inter‐
active software archive is referenced to supplement understanding on how differential 
privacy works, its guarantees, and its trade‐offs. 

Differential privacy has a precise mathematical definition. However, in practice, a differen‐
tial privacy guarantee relies on multiple other factors. These factors are identified in the 
differential privacy pyramid shown in Fig. 1. The ability for each component of the pyra‐
mid to protect privacy depends on the components below it, and each is vital to achieving 
a meaningful privacy guarantee for end users. Evaluating any claim to differential privacy 
protection requires examining every component of the pyramid. As a further aid towards 
evaluating claims about differential privacy protections, flowcharts are provided in each 
section that summarize the high level risk profiles associated with various design choices. 

4 
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Fig. 1. Components of a differential privacy guarantee 

Utility Bias

Algorithms & Correctness

Data Collection Exposure

Side Channels Security Access Control

Threat ModelQuery Model

Unit of Privacy

εε

Unit of Privacy

Utility Bias

Algorithms & Correctness

Data Collection Exposure

Side Channels Security Access Control

Section 2

Section 3

Section 4

Query Model Trust Model

This rest of this publication is organized into three sections: 

• Sec. 2 discusses the top part of the pyramid: privacy parameters—including ε—and 
the unit of privacy, which together are the most direct measure of the strength of a 
differential privacy guarantee. 

• Sec. 3 discusses the middle part of the pyramid: algorithms and correctness, how to 
measure utility, and the ways in which algorithms can introduce bias. 

• Sec. 4 discusses the bottom part of the pyramid: access control, trust models, side 
channels, and data collection, each of which is important for contextualizing a differ‐
ential privacy guarantee. This section also describes emerging methods for combin‐
ing differential privacy with other privacy‐enhancing technologies to build systems 
that provide comprehensive privacy protections. 

This publication will help readers understand, compare, and evaluate differential privacy 
guarantees, and understand the ideas and tradeoffs behind some common approaches 
and system architectures for achieving differential privacy. 

The pyramid and accompanying evaluation processes are not designed for setting the pa‐
rameters of a differential privacy guarantee, though they can support it. Planning a differ‐
entially private data release or designing a differentially private system requires eliciting 
requirements from various stakeholders—for privacy, utility, usability, trust models, and 
more—then setting the parameters of the differential privacy guarantee to meet these 
requirements. Since differential privacy involves tradeoffs between the elements of the 
guarantee, it is often impossible to meet all of the requirements simultaneously, so arriv‐
ing at a final design requires iterative negotiation involving all of the stakeholders. 

5 
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Target Audience 

This publication is primarily intended for those who need to manage the risks of data ana‐
lytics and data sharing—including business owners, product managers, software engineers, 
data scientists, and academics. Much of the content is designed for practitioners with tech‐
nical background in the design and deployment of data‐processing systems, and requires a 
working knowledge of concepts from data science, probability, statistics, and computer sci‐
ence. The parts of this publication that may be helpful for less technical audiences include 
the privacy pyramid, flowcharts, and privacy hazards which can support decision makers 
in navigating the tradeoffs of deploying differential privacy solutions. 

1.1. De-Identification and Re-Identification 

The most common attempt to ensure that an analysis is privacy‐preserving is to perform it 
on de‐identified data. In this publication, de‐identified data refers to data from which iden‐
tifying information has been removed. Identifying information is information that could 
be used to identify directly a specific individual, such as a name, address, phone num‐
ber, or identification number. This approach is sometimes called anonymization but is 
distinct from the definition of anonymization used in the European Union’s General Data 
Protection Regulation (GDPR), Recital 26 [2].2 

2GDPR Recital 26 defines anonymous information as “information which does not relate to an identified or 
identifiable natural person or to personal data rendered anonymous in such a manner that the data subject 
is not or no longer identifiable.” 

NIST SP800‐188 [3] provides guidance on 
performing effective de‐identification. 

Unfortunately, de‐identifying data is challenging in practice because it is difficult to distin‐
guish identifying information from non‐identifying information. Every person has a unique 
combination of features. Any one feature (e.g., gender or age) my not be uniquely identify‐
ing on its own, but as features accumulate they inevitably become uniquely identifying in 
combination. As a result, de‐identified data nearly always contains some information that 
could be identifying. For decades, it was considered prohibitively challenging to recover 
enough information from properly de‐identified data to seriously compromise an individ‐
ual’s privacy [4]. However, the increasing availability of large amounts of data has led to 
the development of more powerful privacy attacks that disprove this assumption. 

In 1997, researchers used a combination of gender, zip code, and birth date from publicly 
available voter registration data to re‐identify individuals in a de‐identified database of 
medical records, including Massachusetts Governor William Weld [5]. While Massachusetts 
stopped releasing de‐identified medical records after that, researchers found that 87% of 
the United States population can be uniquely identified by the three elements mentioned 
above (gender, zip code, and birth date).3 

3See https://aboutmyinfo.org/identity. 

The technique used by these researchers is an example of a linking attack: an approach for 
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exposing information specific to individuals in a de‐identified dataset by matching records 
with a second dataset (often called the auxiliary data). Since the feasibility of a linking 
attack relies on the availability of good auxiliary data, the historical lack of suitable data 
was one basis for the belief that de‐identified datasets preserve privacy. Today, however, 
more data are available than ever before, and linking attacks have been used to re‐identify 
individuals in many different settings [6]. Differentially private analyses are distinct from 
de‐identification, and they provide protection against all potential attacks, including those 
that make use of auxiliary data. 

Ad hoc de‐identification approaches typically transform each data point by redacting in‐
formation considered identifying. The previous section explained why this approach is 
vulnerable to linking attacks. This raises a natural question: what if the data are not sim‐
ply redacted at the level of each individual data point, but instead, it is aggregated before 
publication? 

Unfortunately, even aggregate statistics can inadvertently leak information from individual 
data points, and result in privacy risk. For example, reconstruction attacks use statistics to 
reconstruct original data points. There are mathematical results that show that publishing 
enough statistics will always result in accurate reconstruction attacks [7], as well as practi‐
cal examples of such attacks being performed successfully on real statistical releases [8]. 

1.2. Unique Elements of Differential Privacy 

Differential privacy is a mathematical framework to define what privacy means—that is, an 
attempt to model privacy with math. There are many different techniques for increasing 
privacy, called mechanisms. These mechanisms satisfy particular mathematical conditions, 
as will be discussed in future sections. Differential privacy’s status as a definition (rather 
than a process or technique) represents one major difference compared to techniques like 
de‐identification. With differential privacy, one can bound the amount of information that 
can be learned about any individual in the data. Non‐differentially private data releases 
are unable to bound privacy risks. 

Perhaps more importantly, differential privacy has important advantages over previous pri‐
vacy techniques—including de‐identification—that address many of the privacy challenges 
described earlier in this section. Key advantages include that differential privacy is a rigor‐
ous and precise mathematical definition of privacy, that differentially private releases are 
resistant to all (even not yet developed) privacy attacks, and that privacy protection via dif‐
ferentially privacy composes across multiple data releases. These advantages, discussed 
at length below, are the primary reasons why a practitioner might choose a differential 
privacy framework over some other data privacy technique. Since differential privacy is 
rather new, robust tools, standards, and best‐practices are not easily accessible outside of 
academic research communities. 

Differential privacy was designed by cryptographers; there are parallels between differ‐
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ential privacy and cryptography both in their mathematical definitions and in their paths 
towards broader application and standardization. Like differential privacy, formal cryptog‐
raphy began as a theoretical idea with many open questions around practical applications. 
Over time, these open questions were answered, and today cryptography is standardized 
and widely adopted. There is every reason to believe that differential privacy will follow a 
similar path. 

The following sections define terms that use the differential privacy framework and their 
implications on privacy in the real world, give an overview of techniques for satisfying these 
definitions, and discuss deployment challenges and approaches for addressing them. 

1.3. Differential Privacy and the U.S. Federal Regulatory Landscape 

U.S. federal agencies are governed by various laws, regulations and policies, with each 
agency having its own specific considerations and obligations. For example, U.S. federal 
agencies are required to review the quality (including the objectivity, utility, and integrity) 
of information before it is disseminated to the public under Information Quality Act guide‐
lines.4 

4See Notice 67 FR 8452 on Guidelines for Ensuring and Maximizing the Quality, Objectivity, Utility, and In‐
tegrity of Information Disseminated by Federal Agencies, and Memorandum M‐19‐15 on Improving Imple‐
mentation of the Information Quality Act. 

Trust regulation issued by OMB that instructs recognized statistical agencies and 
units (three of which are in DOC) may only release accurate data.5 

5See 5 CFR 1321.6, Credibility and accuracy. Responsibilities of each Recognized Statistical Agency or Unit. 

Implementation of 
differential privacy in the context of certain technologies (e.g., machine learning or other 
forms of artificial intelligence) may also present specific requirements.6 

6See Executive Order 13960 on Promoting the Use of Trustworthy Artificial Intelligence in the Federal Gov‐
ernment, and Memorandum M‐24‐10 on Advancing Governance, Innovation, and Risk Management for 
Agency Use of Artificial Intelligence. 

We encourage 
readers interested in the release of private official statistics to examine NIST SP 800‐188 
De‐Identifying Government Data Sets, and the UN Guide on Privacy‐Enhancing Technolo‐
gies for Official Statistics. The development of guidelines on how U.S. federal agencies 
should meet legal, regulatory, and policy requirements is out of scope for this document. 
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2. The Differential Privacy Guarantee 

This section introduces differential privacy, describes its properties, and explains how to 
reason about and compare differential privacy guarantees. It focuses on how the specifics 
of the differential privacy guarantee can impact real‐world outcomes and highlights poten‐
tial hazards in defining and evaluating these guarantees. Specifically: 

• Sec. 2.1 defines differential privacy and describes how to interpret its formal defini‐
tion in real‐world terms. 

• Sec. 2.2 introduces privacy parameters, which are one key factor in controlling the 
strength of the privacy guarantee. 

• Sec. 2.3 describes several commonly used variants of the differential privacy defini‐
tion. 

• Sec. 2.4 describes the unit of privacy, which is the other key factor in controlling the 
strength of the privacy guarantee. 

• Sec. 2.5 describes how to compare different privacy guarantees to each other, in‐
cluding the hazards of these comparisons. 

• Sec. 2.6 examines the impact of mixing differential privacy with other kinds of privacy 
protection. 

2.1. The Promise of Differential Privacy 

Differential privacy frameworks provide mathematical definitions 
of what it means to have privacy when an individual contributes 
data to a particular dataset. Informally, the math of differen‐
tial privacy says the chance of any outcome is about the same, 
whether or not the individual contributes their data. This includes 
every possible outcome, including those that might be considered 

Utility Bias
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Data Collection Exposure

Side Channels Security Access Control

Trust ModelQuery Model

Unit of Privacy

εε
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Section 2

Section 3

Section 4

privacy reduction to an individual. Here, the word outcome denotes the result of the anal‐
ysis itself. For example, if an individual bought a pumpkin spice latte last month from their 
favorite coffee stand, the outcome of analyzing that coffee stand’s sales data might be 
learning that 873 pumpkin spice lattes were sold last month. Differential privacy defini‐
tions say that the outcome of an analysis—in this case, overall pumpkin spice latte sales 
data—should be nearly the same with or without any single person’s data. The precise 
notion of “nearly” is governed by the privacy budget, which is discussed in detail below. 

Key Takeaway: Differential privacy promises that the chance of an outcome is about 
the same whether or not an individual contributes their data. 

One way to view the promise of differential privacy is in terms of potential privacy harms 
that could be prevented, like those that can occur from re‐identification attacks. 
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For example, imagine an insurance company wants to provide different rates to people 
with preexisting conditions. The company is financially incentivized to identify who has 
preexisting conditions through re‐identification attacks on datasets. Now imagine Gary 
has a preexisting condition that is expensive to treat. Gary takes a survey about his med‐
ical history and the survey results are published using a differentially private mechanism. 
The insurance company then tries to analyze the differentially private survey results to in‐
fer information about Gary’s preexisting condition. The differential privacy guarantee says 
that whatever the insurance company learns from the differentially private survey results 
will be similar with or without Gary’s participation in the survey. From the perspective 
of the insurance company trying to learn information about Gary, this has the effect of 
making it appear as if Gary never contributed his data in the first place, and renders the 
differentially private survey results useless for the purposes of trying to learn about Gary’s 
preexisting condition. The extent to which Gary’s participation in the survey can change dif‐
ferentially private survey results is governed by the privacy parameters (including privacy 
budget) used in the differentially private mechanism, as discussed in Sec. 2. However, the 
insurance company could still use other data sources that are not differentially private to 
violate Gary’s privacy and learn about his preexisting condition. 

Another useful way to consider the promise is to imagine two hypothetical worlds: 

1. In the real world, X lives in a city, owns a smartphone, pays with a credit card, and 
uses social media. 

2. In an off‐grid world, X lives in an off‐grid cabin and is self‐sufficient. No organization 
collects any data directly from X . 

The off‐grid world is designed to encode an informal notion of “perfect privacy.” Differ‐
ential privacy promises that the chance of an outcome will be about the same in both 
worlds, meaning that privacy reductions that occur in the real world could just as easily 
have occurred in the off‐grid world. 

However, population‐level information can often allow one to infer information about in‐
dividuals. Differential privacy thus does not protect against inferences made about an indi‐
vidual as long as those inferences can be made without that individual’s data. For example, 
differentially private statistics might allow us to learn the following fact: most people have 
eyebrows. From this fact, we can infer that Joe probably has eyebrows. We can infer this 
information whether or not Joe lives in the real world or in off‐grid world. Differentially 
private releases prevent us from improving the accuracy of our inferences about any indi‐
vidual in the data while still enabling inferences about the population. 

Key Takeaway: Differential privacy does not necessarily prevent somebody from mak‐
ing inferences about an individual. 
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Alignment with other definitions of privacy 

It is helpful to demonstrate how the following examples of definitions do or do not align 
with differential privacy to illustrate the capability and the limits for differential privacy to 
meet specific privacy protection needs in practice. 

The NIST Privacy Framework [9] characterizes privacy as a state that safeguards important 
values, such as human autonomy and dignity. Privacy risks arise from problematic data 
actions, which are actions taken on data that could cause an adverse effect for individ‐
uals.7 

7The NIST Privacy Risk Assessment Methodology (PRAM) [10] catalogs some examples of problematic data 
actions. 

Differential privacy provides a strong defense against many of these problematic 
data actions, including common concerns like re‐identification. Methodologies like the Pri‐
vacy Framework can help contextualize the protection provided by differential privacy and 
assess whether that protection matches real‐world expectations. 

Tore Dalenius, an influential survey statistician described inferential disclosure as the pos‐
sibility of learning a sensitive attribute with high but not total certainty [11]. This infor‐
mal notion has been used in statistical disclosure limitation (SDL) literature for decades. 
Differential privacy does not prevent inferences that can be made with population‐level 
information (like the example above), even though these count as inferential disclosures 
under the Dalenius definition. 

More recent work has shown [12–14, 14] that it is impossible to prevent Dalenius’s inferen‐
tial disclosures while using statistics to gain scientific knowledge. This line of work rejects 
Dalenius’s definition, and proposes a new definition for inferential disclosure: access to 
privacy‐preserving statistics should not enable one to learn anything about an individual 
that could not be learned without that individual’s data. This definition of inferential dis‐
closure aligns perfectly with the promise of differential privacy. 

2.1.1. The Math of Differential Privacy 

The original definition to use the differential privacy framework was pure ε‐differential 
privacy [15]: 

Definition: Pure ε‐differential privacy. Let M be a randomized mechanism. M sat‐
isfies ε‐differential privacy if for all neighboring datasets D1 and D2 and all possible 
outcomes S: 

∈
D1 and D2 are considered neighbors if they differ in the data of one individual. 

The definition says that the ratio of two probabilities should be less than or equal to eε , 
where ε is a number called the privacy parameter, the privacy loss or the privacy budget. 
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One can think of the numerator as the chance that outcome S occurs in the real world 
(i.e., with X ’s data) due to processing the data in some way (i.e., the mechanism M), while 
the denominator is the chance that the same outcome S occurs in an off‐grid world (i.e., 
without X ’s data). The definition is symmetric, so the two cases can be reversed. The ratio 
between the two probabilities should be close to 1 (i.e., ≤ eε ) and encode the requirement 
that the chance of each outcome should be about the same in both cases. 

For example, consider a scenario in which 632 pumpkin spice lattes were sold in October. In 
order for this to satisfy differential privacy according to Definition 1, the probability that an 
analysis on dataset D1 returns the number 632 should be about the same as the probability 
that an analysis on D2 returns the same answer. This should also be true of every possible 
answer one could observe (i.e., every output of the analysis M , not just 632), and for every 
hypothetical choice of datasets D1 and D2. 

Definition 1 says that D1 and D2 must be neighboring datasets, which differ in one individ‐
ual’s data. Thus, the difference between the real world and an off‐grid world can be encap‐
sulated in the availability or non‐availability of one person’s data. Neighboring datasets can 
be defined using the unit of privacy that has major impacts on the real‐world implications 
of the differential privacy definition. The unit of privacy is discussed in Sec. 2.4. 

Key Takeaway: The differential privacy guarantee is defined by both the privacy pa‐
rameters (e.g., ε) and the unit of privacy (i.e., the definition of neighboring datasets). 

2.1.2. Properties of Differential Privacy 

The definition of differential privacy has intuitive appeal, but it also has some important 
properties that address many of the shortcomings of previous approaches to privacy. 

1. Differential privacy treats all information as identifying information, eliminating 
the challenging and sometimes impossible task of accounting for all identifying 
elements of the data. 

2. Differential privacy is resistant to privacy attacks based on auxiliary data, so it can 
effectively prevent the linking attacks that are possible on de‐identified data. 

3. Differential privacy is compositional, meaning that the “total privacy reduction” 
of multiple data releases can be considered to ensure that it does not get too 
large over time. 

These properties are direct mathematical implications of the definition itself—they can be 
proved true. 

Two other useful properties of differential privacy are post‐processing invariance and group 
privacy. The post‐processing invariance property says that the output of a differentially 
private mechanism remains differentially private even if other processing is performed on 
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it—in other words, it is not possible to un‐do the differential privacy protection after it has 
been applied. The group privacy property says that if a differentially private mechanism 
provides privacy protection for one person (defined using the unit of privacy, described in 
Sec. 2.4), then it also provides (weaker) protection for a group of people. The strength of 
the guarantee depends on the size of the group. 

2.2. The Privacy Parameter ε 

At the top of the pyramid in Fig. 1, the privacy parameter ε con‐
trols how similar differential privacy’s two hypothetical worlds 
need to be. If ε is very small, then the two worlds need to be 
nearly identical, implying a very strong privacy guarantee. When 
ε is large, the two worlds are allowed to be further apart, implying 
a weaker privacy guarantee. 

Utility Bias
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Trust ModelQuery Model

Unit of Privacy
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Section 2

Section 3
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ε

This dynamic is shown in Fig. 3. The most common way to achieve differential privacy is 
by adding random noise. Thus, as ε gets smaller, the results show stronger privacy but 
less accuracy. This publication refers to this tension as the privacy‐utility tradeoff . Sec. 3.2 
discusses utility and how to measure it. 

This publication will demonstrate that ε is just one of many choices for the privacy parame‐
ter (also called the privacy loss parameter), and will discuss what constitutes a good privacy 
parameter in this section. The flowchart shown in 2 distills the essence of what makes a 
privacy parameter choice low or high risk. 

Fig. 2. An example flowchart for determining whether or not a privacy parameter is low or 
high risk. The specific values of the privacy loss parameters, ε and δ (discussed in detail in the 
text) will depend on a curator’s goals and constraints, and the context of the analysis. 

Key Takeaway: Smaller ε means stronger privacy but lower accuracy. Larger ε means 
weaker privacy but higher accuracy. This dynamic is called the privacy‐utility tradeoff . 
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One of the properties of differential privacy is the ability to compose a privacy loss budget 
of multiple releases. For example, if differential privacy is released using an ε of 1, and 
the same analysis is re‐run and published, the combined ε across both releases is 2. Some 
organizations are considering global privacy budgets for individuals to create an upper limit 
of what can be learned even with multiple releases. 

Selecting privacy loss parameters, such as ε , is chal‐
lenging, and we offer no specific guidelines on their 
selection. The choice will be depend on the sensitiv‐
ity of the data, the goals and constraints of the data 
curator, and a consideration of the data in context. 
Typically, careful expert consideration is required to 
establish suitable privacy loss parameters. 

Privacy Hazard: Large values of 
ε may not provide meaningful 
privacy. 

Open Question: How to set ε is
still an active area of research. 

We encourage vigorous work to inform the ongoing discussion of how to wisely select pri‐
vacy parameters. Publishing privacy parameters establishes trust and accountability in dif‐
ferentially private releases. Publishing the parameters also does not create any additional 
risks to data privacy. 

When navigating the choice of privacy parameters, a few loose suggestions can be help‐
ful starting places. Analysis from one study [16] suggests that ε of 0.1 generally provides 
strong privacy protection, and that ε values less than 1 are considered to be reasonable. 
The situation is less clear for larger values of ε . However, many deployments of differential 
privacy have used larger values (i.e., 1 < ε ≤ 20) [17]. Experiments have shown that ε val‐
ues on the larger end of this scale do not always provide meaningful real‐world privacy [18], 
but the impact of ε in the real world seems to be highly dependent on the situation, and 
larger values of ε may still provide meaningful privacy in some cases. Organizations choos‐
ing to release data with differential privacy are encouraged to evaluate the potential risk 
of the final data, and this is especially important for ε values greater than 1. NIST is ac‐
tively working on empirical privacy metrology that can assist analysts in the estimating of 
disclosure risk. See the NIST PETs Testbed8 

8https://www.nist.gov/itl/applied‐cybersecurity/privacy‐engineering/collaboration‐space/testbed 

as an entry point for relevant NIST initiatives. 

Existing research has shown that in theory, differentially private releases with ε of 10 or 
greater can leave outliers vulnerable to privacy leakage. Wood et al. [16] include analysis 
of a simple mechanism that answers a single question. For this mechanism, even releases 
with ε = 1 can help an adversary make more confident guesses. More complex releases— 
which may split the privacy budget across many queries, train machine learning models, 
or output synthetic data—are usually less susceptible to attacks. However, research has 
shown that even more complicated algorithms can leave outliers vulnerable when ε is 
large. For example, Stadler et al. [19] show that in certain conditions, differentially private 
synthetic data constructed with ε = 10 may leave outliers vulnerable to linkage attacks, 
and Nasr et al. [20] show that maliciously crafted training data sets can result in significant 
leakage from differentially private neural networks when ε = 10. 
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Fig. 3. Impact of the privacy parameter ε: the privacy-utility trade-off. 
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Less noise

Less privacy
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Over time, we hope it will be possible to benchmark enough use cases to establish guide‐
lines for privacy parameters within specific contexts. One effort in that direction is the NIST 
Collaborative Research Cycle (CRC), an effort to benchmark de‐identification algorithms 
generally, including differentially private methods. The CRC uses real demographic data 
sourced from the American Communities Survey from the U.S. Census Bureau, accepts de‐
identified instances of the data from the community, and evaluates the de‐identified data 
using a host of fidelity, utility, and privacy metrics. With this and other similar efforts, we 
hope the community will work toward developing a more sophisticated understanding of 
the interplay of privacy and utility that will lead toward best practices. We think it likely 
that domain and task‐specific best practices will start to emerge with time. 

It is common for the same data to be analyzed many times. In this context, it is common to 
view the ε parameter as a privacy budget—an upper bound on the total allowable privacy 
loss for all analyses of the data. The composition property of differential privacy allows 
us to add up the individual ε parameters for many analyses of the same data to compute 
an upper bound on the cumulative privacy loss of these analyses. For example, an organi‐
zation may perform 10 individual differentially private analyses on a dataset, each with a 
privacy parameter of εi = 0.1. In this case, the total privacy budget is ε = 10 × εi = 1. 

Key Takeaway: If one sensitive dataset is analyzed many times using differential pri‐
vacy, the individual ε parameters can be added up for the analyses to compute an up‐
per bound on the cumulative privacy loss of these analyses—a “total ε” often called 
the privacy budget. 

The privacy parameter ε is an upper bound on privacy loss, rather than an approximation 
or measurement of it—the actual privacy loss experienced by an individual will never be 
larger than ε , but may be much smaller. Moreover, ε is just one possible upper bound on 
privacy loss; other variants of differential privacy may provide more accurate modeling of 
privacy loss, and often leverage parameters other than ε . These variants are discussed in 
Sec. 2.3. 
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2.3. Variants of Differential Privacy 

The original definition of differential privacy is also called ε‐differential privacy or pure 
differential privacy. Since the original development of this definition, several variants have 
been designed that model privacy loss more accurately in some cases. Here we consider 
some of the common variants and their trades offs. For a more detailed discussion of 
variants, their parameters, important characteristics, and how variants relate to each other 
see [21]. 

Benefits of privacy variants 

Table 1 summarizes the commonly used variants of differential privacy. The primary benefit 
of most variants is improved utility over pure ε‐differential privacy. There are two main 
reasons for the improvement: 

1. All four variants enable the use of Gaussian noise (described in Sec. 3.1), which can 
significantly improve utility in some cases. 

2. All four variants enable tighter bounds on composition, resulting in lower privacy 
budgets for iterative algorithms. 

To obtain these benefits, each of the variants weakens the privacy guarantee slightly com‐
pared to pure ε‐differential privacy. 

Selecting a variant. 

When many statistics are being released or an iterative algorithm is used, then using one 
of these variants can significantly improve accuracy. When selecting a variant, Rényi differ‐
ential privacy, zero‐concentrated differential privacy, or Gaussian differential privacy are 
preferred because they offer the best utility and the smallest weakening of the guarantee. 

(ε,δ )-differential privacy and catastrophic failure. 

The final variant—(ε,δ )‐differential privacy (also called approximate differential privacy)— 
includes a parameter δ (pronounced “delta”) that allows mechanisms to provide no privacy 
guarantee at all for rare events (see Appendix Sec. B.1 for the formal definition). For ex‐
ample, a mechanism that picks one person from a dataset of n people and releases their 
data with no noise at all can still satisfy (ε,δ )‐differential privacy as long as δ > 1 .n 

Privacy Hazard: Due to the pos‐
sibility of catastrophic failure, 
when using (ε,δ )‐differential 
privacy, set δ ≤ n 

1
2 .

This guarantee can allow for a complete, catas‐
trophic failure of privacy. To obtain meaningful real‐
world privacy protection with (ε,δ )‐differential pri‐
vacy, δ is typically set very small compared to n so 
that mechanisms like the example above are not 
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Table 1. Variants of differential privacy

Differential Privacy Variant Parameters Benefit over ε‐DP 

ε‐DP (Pure DP) ε — 

(ε,δ )‐DP (Approximate DP) ε,δ Gaussian mech.; mechanisms with catastrophic failure 

Rényi DP (RDP) 

Zero‐Concentrated DP (zCDP) 

Gaussian DP (GDP) 

α,ε 

ρ 

µ 

Gaussian mech.; precision; no catastrophic failure 

Gaussian mech.; precision; no catastrophic failure 

Gaussian mech.; precision; no catastrophic failure 

possible. In other words, catastrophic failure is so unlikely that it is never expected to 
1occur [22]. A common recommendation is to set δ ≤ n2 . Another sensible approach is 

δ ≤      1n log n . Neither of these approaches is appropriate for small values of n. Typically, val‐ 

ues of δ exceeding 10−5 are suspicious and should be justified carefully if used.

For many mechanisms, the variants in Table 1 provide the same (or better) utility as (ε,δ )‐
differential privacy without the possibility of catastrophic failure, and these variants should 
be used when possible. However, some useful mechanisms do have catastrophic failure 
modes, and thus require the use of (ε,δ )‐differential privacy. These mechanisms can offer 
unique utility benefits. One example is determining the set of bar chart bins from the 
data—see Sec. 3.4.1 for details. When such mechanisms are needed to support a desirable 
use case, then (ε,δ )‐differential privacy must be used, and δ should be set so that δ  n 

1
2 ≤

to avoid catastrophic privacy failures. 

Interpreting guarantees.

Each of the variants in Table 1 has a different set of privacy parameters, and measures 
privacy loss in a different way. Even when the parameters overlap, parameters with the 
same name can have different meanings. For example, the ε in Rényi differential privacy 
is only similar to the ε in pure ε‐differential privacy when α is very large. Given these 
differences, how can one interpret and compare guarantees in different variants? 

The most precise approaches for interpreting and comparing differential privacy guaran‐
tees are based on hypothesis testing [23, 24] or interpretation via Bayesian or frequentist 
semantics [14]. These approaches allow direct, precise interpretation of the privacy guar‐
antee. For example, the formal definition of pure ε‐differential privacy (Definition 1) can 
be viewed as bounding the error rates in a hypothesis test over the output of a differentially 
private mechanism: 

• H0: The mechanism’s input dataset was D1

• H1: The mechanism’s input dataset was D2

In this framework, the privacy guarantee can be described in terms of hypothesis testing 
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error rates. The false positive rate (or Type I error rate) is the probability that the adversary 
guesses that H0 is true, but in fact H0 is false and H1 is true. The false negative rate (or 
Type II error rate) is the probability that the adversary guesses that H0 is false (thus H1 is 
true), but in fact H0 is true and H1 is false. 

Definition 1 implies that the error rates achieved by any adversary who observes the output 
of an ε‐differentially private mechanism must obey: 

• Pr[false positive]+ eε Pr[false negative]  1 ≥ and 

• eε Pr[false positive]+ Pr[false negative]  1 ≥

This interpretation allows the adversary to trade off between false positives and false neg‐
atives, but when ε is small, the adversary cannot achieve low error rates for both error 
types simultaneously. 

The other variants in Table 1 can also be viewed through the hypothesis testing lens, al‐
lowing direct and precise comparison between variants and precise interpretation of the 
privacy guarantee in common terms. 

The main challenge of interpreting privacy guarantees this way is complexity. The hypoth‐
esis testing interpretation yields many possible tradeoffs between false positives and false 
negatives, and interpreting the guarantee requires considering all of them. Comparing two 
guarantees requires comparing this tradeoff across the whole range of error rates. 

Wasserman and Zhou [25] describe a framework for comparing mechanisms that provides 
precise comparisons by leveraging the semantics of the privacy guarantee directly. When 
comparing two mechanisms, this approach can provide a precise comparison whose result 
is easy to interpret. 

Both of these approaches currently require significant technical expertise to apply and 
interpret. 

Key Takeaway: Precise and direct interpretation and comparison of differential pri‐
vacy guarantees can be performed via hypothesis testing interpretations and other di‐
rect interpretations of the privacy guarantee’s semantics. Correct application of these 
approaches currently requires significant technical expertise. 

Interpreting guarantees via conversion. 

Guarantees given in two different variants can also be interpreted and compared by con‐
verting them to a common format. All of the variants in Table 1 can be converted to (ε,δ )‐
differential privacy for comparison, as shown in Fig. 4. This approach is simpler than the 
direct interpretations mentioned earlier, but can be significantly less precise. 
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ε‐DP 

(α, ε)‐RDP 

(ε, δ )‐DPρ‐zCDP 

µ‐GDP 

converts to 

Fig. 4. All of the differential privacy variants shown in Table 1 can be converted to 
(ε,δ )-differential privacy. 

Key Takeaway: Rényi differential privacy, zero‐concentrated differential privacy, and 
Gaussian differential privacy guarantees can be converted to (ε,δ )‐differential privacy 
guarantees to enable a simplified interpretation and comparison between them. The 
conversion is both loose and lossy, and must be done with care. 

There are two important limitations of interpreting guarantees by converting to (ε,δ )‐
differential privacy. First, the conversion is loose—the original privacy parameter(s) pro‐
vide a more accurate upper bound on privacy loss than the converted ε and δ , and the 
difference is sometimes significant. This effect can cause the conversion result to commu‐
nicate a more pessimistic view of privacy loss than the original parameter. 

Second, the conversion is lossy—when performing the conversion, the analyst chooses a 
value for δ and calculates ε ; each guarantee in these variants corresponds to many possible 
(ε,δ ) pairs. This effect means that choosing a large δ can result in a misleading optimistic 
value for ε . For example, a zero‐concentrated differential privacy guarantee with ρ = 0.1 
corresponds to infinitely many (ε,δ )‐differential privacy guarantees, including both ε = 
1.45,δ = 10−2 and ε = 4.39,δ = 10−20 . 

Due to these limitations, conversion to (ε,δ )‐differential privacy is not the most precise 
method for interpreting guarantees and should not be used as a replacement for reporting 
the original privacy parameters. When performing conversions, analysts should set δ ≤ n 

1
2 , 

as described earlier. 

Key Takeaway: When converting a guarantee to (ε,δ )‐differential privacy, set δ ≤ 1 
n2 . 

When reporting guarantees, report all of the original privacy parameters to allow third 
parties to perform more precise interpretation of the guarantee. 
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2.4. The Unit of Privacy 

The second layer of the differential privacy pyramid (Fig. 1) is the 
unit of privacy for a differential privacy guarantee. Definition 1 
defines differential privacy in terms of neighboring datasets and 
says that two datasets D1 and D2 are neighbors if they differ in 
one person’s data. This is an informal description, and how it is 
formalized significantly impacts the actual meaning of a differen‐

Utility Bias
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Data Collection Exposure

Side Channels Security Access Control

Trust ModelQuery Model

Unit of Privacy

ε

Unit of Privacy

Section 2

Section 3

Section 4

tial privacy guarantee. The formal definition of neighboring datasets in a differential pri‐
vacy guarantee implies a real‐world unit of privacy that specifies exactly what is protected 
by the guarantee. In many ways, it is just as important to real‐world privacy as the setting 
of the privacy parameters. 

Fig. 5. An example flowchart for determining whether or not a unit of privacy is low or high 
risk. Actual values will depend on the context. 

Fig. 5 shows a potential flowchart for determining the unit of privacy. The unit of pri‐
vacy has two components that together determine the formal definition of neighboring 
datasets: (1) what it means for two datasets to “differ,” and (2) a definition of “one person’s 
data.” This publication focuses on the second component of the unit of privacy, since some 
settings for this component can significantly weaken the privacy guarantee. User‐level pri‐
vacy provides a strong guarantee, and is the best default setting for this component. 

2.4.1. Bounded and Unbounded Differential Privacy 

What does it mean for two datasets to “differ”? The two most common definitions are 
called unbounded differential privacy and bounded differential privacy [26]. In unbounded 
differential privacy, two datasets D1 and D2 differ in one person’s data if it is possible to 
construct D2 from D1 by adding or removing one person’s data. In unbounded differential 
privacy, D1 and D2 have different sizes, because of the addition or removal of one person’s 
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data. In bounded differential privacy, two datasets D1 and D2 differ in one person’s data if it 
is possible to construct D2 from D1 by changing one person’s data. In bounded differential 
privacy, D1 and D2 are the same size. 

Both unbounded differential privacy and bounded differential privacy can provide robust 
privacy in many cases, but there are subtle differences that are important in some contexts. 
Most importantly, for a dataset D of size n, all of D’s neighbors under bounded differential 
privacy also have size n; this property means that a mechanism which releases the dataset 
size n without any noise at all can still satisfy differential privacy (see Sec. 3.1 for details). 
Thus if the size of the dataset is considered sensitive—or if criteria for inclusion into the 
data are sensitive—then bounded differential privacy is not a good choice. 

Mechanisms that satisfy unbounded differential privacy also satisfy bounded differential 
privacy (via a conversion that increases the privacy parameter by a scaling factor), and 
also protect the size of the dataset n. Unbounded differential privacy is therefore a safer 
choice, and should be used when possible. However, some mechanisms cannot be proven 
differentially private under unbounded differential privacy, and thus require the use of 
bounded differential privacy. When these mechanisms are used, it is important to consider 
that the deployed system may reveal the total size of the dataset. Another constraint to 
be aware of is that the size of the dataset n is always considered sensitive when using 
unbounded differential privacy, and therefore should not be used to set public parameters, 
e.g., to set the δ parameter using the formula δ = 1 

n . When using bounded differential 
privacy, the size of the dataset n is never considered sensitive. 

2.4.2. Defining One Person’s Data 

How does one define “one person’s data” formally? The answer depends on the underlying 
assumptions for a given scenario’s trust model, and it defines exactly what is protected by 
the differential privacy guarantee. This section describes several common choices for this 
component of the unit of privacy and their implications for real‐world privacy harms. 

Unit of Privacy: Event Level 

Privacy Hazard: Event‐level 
privacy protects events, rather 
than people, and can result in 
surprisingly weak privacy guar‐
antees. 

To see why the unit of privacy is so important, con‐
sider how one would determine whether D1 and D2 

are neighboring datasets in the earlier example sce‐
nario of the number of pumpkin spice lattes sold in 
October. One could say that D1 and D2 are neigh‐
bors if they differ in one event (e.g., a single transac‐
tion). This is an easily formalized definition and is sometimes called event‐level privacy. It 
is also sometimes called row‐level differential privacy because single events often translate 
directly to single rows in a database. 

To think about how this unit of privacy impacts the real‐world privacy of individuals, imag‐
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ine a scenario in which a particularly thirsty customer (Customer X ) buys 610 of the 632 
pumpkin spice lattes sold in October. Imagine that an adversary knows the identities and 
purchase history of all of the pumpkin spice latte customers except for Customer X and 
wants to find out whether Customer X purchased a small number of pumpkin spice lattes 
(e.g., fewer than 30) or a large number (e.g., more than 200). The adversary might be able 
to figure out which of these two hypothetical situations is the real one, even if differential 
privacy is used because the full strength of the differential privacy guarantee applies only 
to neighboring datasets. Under the event‐level unit of privacy, the datasets associated 
with the adversary’s hypotheses are not neighbors. The event‐level unit of privacy says 
that neighboring datasets differ by one event (i.e., by a single pumpkin spice latte trans‐
action), and the adversary’s hypotheses differ by much more than this. The event‐level 
unit of privacy does protect against an adversary who wants to know whether Customer 
X bought 632 or 633 pumpkin spice lattes because the associated datasets are neighbors 
under this unit of privacy. 

Event‐level privacy can result in surprisingly weak privacy guarantees, since it protects in‐
dividual events rather than people. There are cases when event‐level privacy makes sense, 
but use of event‐level privacy requires careful consideration. 

Unit of Privacy: User Level 

For a stronger real‐world guarantee, one can use a different unit of privacy: D1 and D2 are 
neighbors if they differ in one user’s data. This definition of neighboring datasets is called 
user‐level privacy. Under this unit of privacy, the adversary’s hypotheses about Customer X 
are represented by neighboring datasets. In fact, any dataset where Customer X purchases 
n pumpkin spice lattes is a neighbor of a dataset where Customer X purchases m lattes for 
any values of n and m (for bounded differential privacy), or of a dataset where Customer 
X is not present at all (for unbounded differential privacy). Thus, differential privacy does 
translate to a meaningful real‐world privacy guarantee against the adversary discussed 
above if the unit of privacy is set correctly. 

Other Units of Privacy 

More complex units of privacy are sometimes used in practical deployments. For example: 

• Attribute‐level privacy protects a specific attribute of each individual in the data: D1 

and D2 are neighbors if they differ in a single user’s attribute. For example, gender‐
level privacy would protect against an adversary whose only goal is to find out some‐
one’s gender (assuming all other attributes that correlate with gender have been 
accounted for). 

• User‐day‐level (or week, month, etc.) privacy protects activities of each individual 
in a specific time period: D1 and D2 are neighbors if they differ in a single user’s 
data taking place on the same day. This is often used when the input dataset grows 
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over time, and the data are regularly shared or published. In this model, differential 
privacy guarantees hold under the assumption that data in each time window is fully 
independent, which may be an unrealistic assumption. 

In some contexts (e.g., social network data, establishment statistics, or location data), the 
unit of privacy must be adapted to the context in a domain‐specific way [27]. In use cases 
that involve sharing or publishing multiple statistics along several distinct dimensions of 
the data, it is often useful to measure privacy loss with multiple units of privacy, to pro‐
vide a more complete picture of the overall guarantees. For example, a mechanism could 
provide both gender‐level privacy with ε = 0.2, age‐level privacy with ε = 0.3, and user‐
level privacy with ε = 1. Finally, in some use cases, the privacy loss associated with a 
specific unit of privacy can vary depending on the value of each record [28, Sec. 5]. This 
is useful in cases that involve heavily‐skewed data, for example when computing statistics 
about companies [27]. 

Complex units of privacy like these are difficult to interpret and can weaken the privacy 
guarantee in surprising ways. For example, a user‐day privacy guarantee with ε = 1 may 
appear to be a strong guarantee (due to the small value of ε), but the total privacy loss may 
be ε = 365 over the course of an entire year. A guarantee that protects gender with ε = 0.2 
may fail to provide any protection for proxies of the gender attribute. Complex units of 
privacy thus require careful scrutiny due to their potential for unintentionally revealing 
sensitive information. 

Key Takeaway: user‐level privacy provides stronger guarantees than attribute‐level, 
user‐day‐level, or event‐level privacy, and a privacy unit at least as large as an individual 
user should be used when possible. 

Transforming the Unit of Privacy: Bounding Contributions 

A common way to achieve user‐level privacy when each user submits multiple events is to 
enforce an upper bound on the number of events contributed by each user by transforming 
the data (e.g., keeping the first k events they submit and throwing away any further events 
or by keeping a random size‐k subset of their events). Approaches like this are used to 
bound the contributions made by each user. 

Bounding contributions transforms the unit of privacy from the event level to the user level, 
but it also scales up the sensitivity (described in Sec. 3.1) of operations on the data by the 
upper bound k. As a result, user‐level guarantees achieved by bounding contributions 
require more noise for the same value of ε , and k should be set carefully to maximize 
accuracy. 

Bounding contributions can also be used to achieve other kinds of privacy units. For exam‐
ple, it is possible to enforce an upper bound of k events per user per day (or other unit of 
time) or per location (or other unit of geography). These guarantees tend to be stronger 
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than event‐level privacy but weaker than user‐level privacy, and their strength can be dif‐
ficult to interpret (see Sec. 2.5). 

Evaluating the Unit of Privacy 

To determine whether a unit of privacy is sufficient, start with the user‐level unit of pri‐
vacy. Then consider possible real‐world privacy loss risk, and evaluate whether the unit of 
privacy makes guarantees in the associated scenarios. 

Privacy loss risk can be defined in terms of pairs of hypothetical situations that an adver‐
sary would like to distinguish (i.e., they would like to know which hypothesis is true). The 
example above described a potential privacy loss in terms of two hypotheses: 

1. Customer X purchased fewer than 30 pumpkin spice lattes. 

2. Customer X purchased more than 200 pumpkin spice lattes. 

Now, consider the datasets D1 and D2 associated with the two hypothetical situations. D1 

will contain fewer than 30 transactions from Customer X , while D2 will contain more than 
200 transactions. 

If these two datasets are neighbors based on the Privacy Hazard: If the differ‐
ence between two hypothetical 
situations is not captured by the 
unit of privacy, then differential 

chosen unit of privacy, then the differential privacy 

privacy may not prevent an ad‐

versary from distinguishing the 
two situations. 

guarantee applies to the underlying privacy loss. If 
they are not, then differential privacy makes no di‐
rect guarantee about the privacy loss. In the previ ‐
ous example, the event‐level unit of privacy means 
that D1 and D2 are not neighbors, so differential 
privacy makes no direct guarantees about this situa‐
tion. Under the user‐level unit of privacy, the two are neighbors. In some cases, privacy 
guarantees can be converted from one unit of privacy to another. While conversion can 
be used to establish guarantees for an appropriate unit of privacy from an inappropriate 
one, it typically loses considerable precision or leads to a guarantee that is too weak to be 
meaningful. In the case of group privacy, conversion from user‐level privacy does not lose 
precision, and so it is often calculated from a user‐level privacy guarantee as needed. 

Choosing a Unit of Privacy 

Privacy Hazard: user‐level pri‐
vacy is a strong setting for the 
unit of privacy. Other set‐
tings may provide significantly 
weaker protection in practice. 

The user‐level unit of privacy is an excellent de‐
fault and generally provides robust real‐world pri‐
vacy. Relaxing the unit of privacy can improve accu‐
racy and reduce ε and δ simultaneously, but it can 
also lead to surprising real‐world privacy failures. In 
particular, it may be possible to learn a significant 
amount about an individual’s habits when event‐level privacy is used. 
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Example scenarios that highlight the impact of event‐level privacy include: 

• Event‐level privacy for website logs protects a single visit to a URL but not repeat 
visits. 

• Event‐level privacy for taxi trip data protects a single trip but not an individual’s com‐
mon destinations (e.g., home or work). 

• Event‐level privacy for smart meters protects a single meter reading but not trends 
in electricity use (e.g., the use of power‐hungry Bitcoin mining equipment). 

Bounds on user contributions can strengthen the privacy guarantee significantly, but the 
bounds must be selected carefully. A total contribution limit is strongest and equivalent to 
user‐level privacy. Bounds that reset periodically can be much weaker. 

Example scenarios that highlight the impact of bounding contributions include: 

• A total contribution limit is equivalent to user‐level privacy and generally provides 
robust real‐world privacy. 

• A per‐day contribution limit protects activities in a single day but not activities that 
repeat across multiple days. 

• A per‐month contribution limit protects activities in a single month but not activities 
that occur every month. 

The safest default for any differential privacy guarantee is user‐level privacy or a total con‐
tribution bound that transforms the guarantee into user‐level privacy. Weaker units of 
privacy can improve accuracy or reduce ε , but they can also weaken the privacy guaran‐
tee significantly. When a weaker unit of privacy is used, it is important to assess whether 
the differential privacy guarantee still offers the desired protection against real‐world pri‐
vacy risks. For example, group privacy is a unit of privacy that naturally maps directly to 
real‐world privacy risks in some settings. 

2.5. Comparing Differential Privacy Guarantees 

This section demonstrates the implications of different kinds of differential privacy guar‐
antees by comparing different guarantees to each other. 

Privacy Parameter ε 

The setting of the privacy parameter ε has the most visible impact on real‐world privacy, 
and comparing ε values is the first step in comparing two guarantees. For example, a 
pure ε‐differential privacy guarantee (i.e. δ = 0) with ε = 0.1 is strictly stronger than a 
guarantee with ε = 10. 
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ε 2.5 ε 2.5 
δ 1 · 10−25 δ 1 · 10−5 

Privacy Unit User level Privacy Unit User Level 

(a) (b) 

Privacy Hazard: 
Guarantees with dif‐
ferent values of δ are not 
directly comparable. 

Fig. 6. An example of two differential privacy guarantees that have the same ε value. The 
two guarantees are not directly comparable because they have different δ values. 

ε 2.5 ε 2.5 
δ 1 · 10−5 δ 1 · 10−5 

Privacy Unit User Level Privacy Unit Event Level 

(a) (b) 

Privacy Hazard: 
Guarantees with dif‐
ferent units of privacy 
are not directly compara‐
ble. 

Fig. 7. An example of two differential privacy guarantees that have the same ε and δ values. 
The two guarantees are not directly comparable because they have different units of privacy. 

Privacy Parameter δ 

Because of the direct relationship between ε and δ described earlier, it is usually not pos‐
sible to directly compare two (ε,δ )‐differential privacy guarantees when their δ values 
differ. For example, consider the two guarantees in Fig. 6. Their ε values are the same, 
but their δ values are different, so they are not directly comparable. If the ε and δ values 
result from conversion from another variant of differential privacy, the original privacy pa‐
rameters should be used to make the comparison. 

In practice, it is common to use the ε value alone to get a rough sense of the strength of 
the privacy guarantee or to roughly compare two guarantees (after confirming that δ ≤ n 

1
2 ). 

As described earlier, this approach can be imprecise. 

Unit of Privacy 

An improper setting for the unit of privacy can unintentionally reveal information about 
individuals. For example, consider the two guarantees in Fig. 7. Guarantee (a) is strictly 
stronger because its unit of privacy is strictly larger even though the other parameters are 
the same for both guarantees. Guarantee (b) may not provide meaningful privacy when 
one person’s data contributes to many events, and as a result an attacker may be able to 
determine sensitive information about the individual, in spite of the differential privacy 
guarantee. 
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Privacy Hazard: When 
converting a guarantee 
to (ε,δ )‐differential 
privacy, choosing a large 
value for δ results in a 
misleading value for ε . 

Fig. 8. An example of two differential privacy guarantees that have different ε and δ values. 
The two guarantees are directly comparable because one is convertible to the other using a 
conversion formula. 

Conversion Between Variants 

Converting to (ε,δ )‐differential privacy from another variant of the differential privacy 
definition requires picking a value for δ . In this situation, the δ parameter is important 
for interpreting the resulting ε and comparing it with other guarantees. For example, con‐
sider the two guarantees in Fig. 8. Guarantees (a) and (b) are equivalent even though the 
reported ε values are very different. The difference comes from the trade‐off between ε 
and δ in the conversion process from zero‐concentrated differential privacy—a larger δ 
allows for a smaller ε , and a smaller δ requires a larger ε . 

When a variant is converted to (ε,δ )‐differential privacy, the original privacy parameters 
should also be given (e.g., for zero‐concentrated differential privacy, the value of ρ). This 
information allows third parties to perform their own conversion with other values for δ , 
enabling direct comparison with other guarantees. 

2.6. Mixing Differential Privacy With Other Data Releases 

Privacy Hazard: The use of
differential privacy does not
mitigate privacy risks associated 
with other (non‐differentially 
private) releases based on the
same underlying data. 

In some contexts, it may be necessary to re‐
lease both differentially private statistics and non‐
differentially private statistics calculated from the 
same underlying data. For example, an organization 
may wish to make two releases based on the same 
underlying data: 

1. Exact summary statistics without differential 
privacy (under the assumption that the associated privacy risk is low, even without 
differential privacy) 

2. Detailed statistics with differential privacy 

When evaluating privacy risk, it is important to consider the total impact of all releases. In 
particular, the use of differential privacy in the second release does not improve privacy 
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for the first release. In situations like this, it is important to consider the total privacy risks 
of all releases (e.g., using the NIST Privacy Risk Assessment Methodology [10]). 

In this setting, it is possible to ensure consistency between the two releases by “post‐
processing” the differentially private release. This involves modifying the differentially 
private release to make it consistent with the non‐differentially private release. It is 
important to note that this kind of post‐processing does not fall under differential pri‐
vacy’s post‐processing invariance guarantee—even though the same terminology is often 
used—because it leverages the original sensitive data to perform the post‐processing. Post‐
processing of this kind thus does not satisfy differential privacy. 

2.7. Auditing and Empirical Measures of Privacy 

A number of approaches for privacy auditing have been developed that test the level of 
privacy provided by an implementation of differential privacy experimentally. These ap‐
proaches can be used for query‐answering and data release systems [29–34], and for ma‐
chine learning systems [35–37]. They typically work by running the algorithm being tested 
many times to determine if the distribution of results satisfy the differential privacy defini‐
tion. Approaches for auditing are an example of empirical methods for measuring privacy 
risk. 

Empirical approaches, including auditing, cannot prove that a system correctly provides 
a desired differential privacy guarantee. However, auditing approaches can be helpful in 
finding implementation bugs: if the auditing procedure finds a counterexample, then the 
system under test definitely does not provide the desired privacy guarantee. 

The results of auditing procedures can be difficult to interpret. For example, some ap‐
proaches report average‐case results, which can significantly underestimate the privacy 
risk to outliers in the dataset and result in false confidence in the system’s privacy pro‐
tection. Aerni et al. [38] describe the pitfalls associated with empirical measurement of 
privacy in machine learning systems; many of their conclusions also apply in other con‐
texts. When used carefully, auditing approaches can be effective tools to help find bugs 
and supplement (rather than replace) privacy proofs. 
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3. Differentially Private Algorithms 

This section describes specific algorithms for differentially private 
analysis. It focuses on high‐level descriptions of established ap‐
proaches with a particular emphasis on algorithms that are practi‐
cal and easy to deploy. The first three sections describe important 
general considerations of differentially private algorithms, includ‐
ing utility and bias: 

Utility Bias

Algorithms & Correctness

Data Collection Exposure

Side Channels Security Access Control

Trust ModelQuery Model

Unit of Privacy

ε

Utility Bias

Algorithms & Correctness

Section 2

Section 3

Section 4

• Sec. 3.1 gives an overview of several building blocks used in differentially private 
algorithms. 

• Sec. 3.2 describes utility, and accuracy, and some methods for measuring them. 

• Sec. 3.3 explores the impacts that some differentially private algorithms have on 
different forms of bias in data releases. 

Thereafter, the sections are organized by analysis type: 

• Sec. 3.4 describes techniques for analytics queries on a single data table (e.g., count‐
ing, summation, and average queries). 

• Sec. 3.5 describes techniques for machine learning, including deep learning. 

• Sec. 3.6 describes techniques for generating differentially private synthetic data. 

• Sec. 3.7 discusses unstructured data (e.g., text, photos, and video). 

Privacy Hazard: Avoid custom 
implementations of differ‐
entially private algorithms, 
and use well‐tested libraries 
instead. 

This section describes some specific differentially 
private techniques to give practitioners a basic idea 
of how differential privacy is implemented and to 
highlight the impact of implementation choices on 
utility, bias, and other factors. NIST strongly recom‐
mends that practitioners use well‐tested implemen‐
tations provided by libraries rather than implementing these mechanisms and algorithms 
themselves. As discussed in Sec. 4, implementing differentially private algorithms can be 
tricky, and custom implementations increase the risk of privacy vulnerabilities. 

3.1. Basic Mechanisms and Common Elements 

Randomized functions (often called mechanisms) are used to achieve differential privacy. 
If Definition 1 is proven for a mechanism, it is called a differentially private mechanism. 

This section describes two basic differentially private mechanisms that are often used to 
build larger mechanisms and systems: the Laplace mechanism and the Gaussian mecha‐
nism. Both work by adding noise to the output of a query, and both mechanisms scale the 
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noise according to the sensitivity of the underlying query. Sensitivity is defined to mea‐
sure how much the output of a query could change when its input (i.e., the data being 
queried) changes. Two commonly used sensitivity measures are L1 and L2. The L1 sensi‐
tivity is measured using L1 distance (i.e., Manhattan distance), while the L2 sensitivity is 
measured using L2 distance (i.e., Euclidean distance). See Appendix Sec. B.2 for the formal 
definitions. 

Key Takeaway: The sensitivity of a query is designed to measure how much the query 
output could change as a function of how much the input could change. 

Mechanism: Laplace Mechanism [22]. The Laplace mechanism adds random noise 
drawn from the Laplace distribution to the output of a query. It uses L1 sensitivity and 
guarantees (ε,0)‐differential privacy. 

Mechanism: The Gaussian mechanism adds random noise drawn from the Gaussian 
(or normal) distribution to the output of a query. It uses L2 sensitivity and guaran‐
tees privacy in a number of different variants of differential privacy, including the ε, δ 
variant. 

Choosing a Mechanism 

While both the Laplace and the Gaussian mechanisms add noise to a query’s output to 
satisfy differential privacy, they differ in two major ways: the guarantee they provide and 
the measure of sensitivity they require. 

The Laplace mechanism satisfies all of the differential privacy variants in Table 1, including 
pure ε‐differential privacy. The Gaussian mechanism satisfies all of the variants in Table 1 
except pure epsilon differential privacy. If the stronger pure ε‐differential privacy guaran‐
tee is required, then the Gaussian mechanism is not an option. 

If either guarantee is sufficient, then the choice can be made based on which mecha‐
nism provides better accuracy. For queries with low‐dimensional outputs (i.e., for a query 
f : D → Rk for small k, including k = 1), the Laplace mechanism often provides better 
accuracy. For queries with high‐dimensional outputs (i.e., large k), the Gaussian mecha‐
nism often provides better accuracy because it allows the use of L2 sensitivity. For high‐
dimensional outputs, L2 sensitivity is typically much smaller than L1 sensitivity, which sig‐
nificantly improves accuracy. These general properties do not always hold, and the most 
accurate mechanism depends on the privacy parameters, sensitivity, and chosen accuracy 
metrics; see one example in the next section. Exact calculations can be made based on 
these values to select the most accurate mechanism for a specific situation. 
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3.2. Utility and Accuracy 

Utility refers to how useful a dataset or statistic is for a specific pur‐
pose. Accuracy refers to the difference between a mechanism’s 
output and the true value that it is attempting to estimate. The 
two are not synonymous, even though they are often used inter‐
changeably. Utility depends on the way a statistic will be used, 
while accuracy is simply a measurement of the statistic’s error. In 
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particular, data can be: 

• Accurate but not useful. For example, if a mean was provided very accurately, but 
a 95th percentile was required. 

• Inaccurate but still useful. For example, an inaccurate statistic may be sufficient to 
demonstrate a difference between two populations if the difference is very large. 

The essence of what makes a utility assessment low or high risk is distilled in a flowchart, 
shown in Fig. 9. 

Fig. 9. A flowchart for determining whether or not a utility assessment is low or high risk. 

Metrics for Utility: No General Solution 

A statistic or data release can be used to answer many different questions. If the questions 
are known in advance, it is sometimes possible to develop outcome‐specific utility metrics 
that directly measure the utility of the data for answering the specific questions of interest. 

Often the specific questions of interest are not known when the data or statistics are 
created, so designing outcome‐specific metrics based on those questions is not possible. 
Moreover, no single metric (or group of metrics) applies to all questions. 

A number of different metrics have been developed that attempt to approximately mea‐
sure utility for large classes of questions [39]. These metrics combine measures of accuracy 
with assessments of properties that are typically of interest to statisticians, like correlations 
between columns in the data. Such metrics are useful tools for evaluating the quality of 
differentially private statistics or data releases. However, most utility metrics do not nec‐
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essarily ensure utility for all possible questions of interest. This is by design, as it is not 
possible in general to achieve strong utility and privacy for all possible queries of interest. 

Metrics for Accuracy 

Because utility is difficult to measure directly, accuracy metrics are often used as a proxy 
for utility. Two common accuracy metrics are absolute error and relative error. Absolute 
error is simply the absolute difference between the true query result and the noisy one. 
Relative error is the absolute error divided by the true query result. 

This setting poses a challenge to measuring error: the mechanisms used for differential 
privacy often add random noise to query results, and that noise is, in theory, unbounded 
(i.e., it has no maximum or minimum). For example, it is possible to draw a Laplace noise 
sample in the millions or billions, but it is extremely unlikely. To get an idea about how 
much error is likely to be seen when running the mechanism, one can use a confidence 
interval. For example, a 95% confidence interval says that the absolute error of the mech‐
anism will lie within the specified interval 95% of the time. If this interval is small, then 
one can be confident that the mechanism will give an accurate answer most of the time. 

For example, the Laplace mechanism described earlier can be measured by bounding the 
absolute error of the mechanism due to the noise it adds. The absolute error for the 
Laplace mechanism is defined as | f (x) − ( f (x)+ Lap(∆1/ε))|. The noise depends on the 
privacy parameter ε . That is, the smaller the ε , the larger the error. 

An example of a 95% confidence interval for the absolute error of the Laplace mechanism 
is shown in Fig. 10. In this example, the query f (x) is an average, and the true result is 
f (x) = 331. The confidence interval is graphed as an error bar extending above and below 
the average. As ε gets smaller, the error bar becomes larger, meaning that the Laplace 
mechanism is more likely to return results with a larger error when ε is small. 

The type of randomness used to achieve differential privacy can have important but sub‐
tle impacts on the way accuracy is measured. For example, the Gaussian distribution has 
lighter tails than the Laplace distribution—sampling a very large noise value is less likely 
when adding Gaussian noise than when adding Laplace noise. As a result, the best mech‐
anism to use may be different depending on the desired confidence level: 

• The 95% confidence interval may indicate that the Gaussian mechanism has lower 
error 

• The 75% confidence interval may indicate that the Laplace mechanism has lower 
error 

For precise comparisons between mechanisms, it is important to understand the interplay 
between the mechanism’s design and the accuracy metrics chosen, since choosing a dif‐
ferent metric may change the outcome of the comparison. 
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Fig. 10. The 95% confidence interval for the absolute error of the Laplace mechanism. 
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Fig. 11. A plot of subsample size vs the 95% confidence interval shown in Fig. 10. 

Comparison With Subsampling 

The error of the mechanism can be compared with some other approach that could be used 
to achieve privacy. One useful point of comparison is subsampling—computing the query’s 
result using only a fraction of the original data selected at random and then measuring 
the error of that result against the true result. When only a small fraction of the original 
data are used, one can expect to obtain a less accurate result. The resulting “mechanism” 
does not satisfy differential privacy, but it has sometimes been used as an informal privacy 
mechanism. 

Figure 11 plots a subsample size (measured as a fraction of the total dataset) against 95% 
confidence interval in the same way as Fig. 10. As the subsample size gets smaller, the 
confidence interval increases. This means that less accurate results can be expected with 
smaller subsamples. Note that the y‐axis of this figure has the same scale as the earlier 
figure. The larger confidence intervals in the second image suggest that the Laplace mech‐
anism can give much more accurate answers than subsampling in most settings. 
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Fig. 12. A plot of subsample size vs epsilon values that give the same error confidence interval. 

Subsampling can be directly compared with the Laplace mechanism by performing the 
following experiment: for a particular subsample size, consider the value of the privacy 
parameter ε that would have resulted in the same confidence interval as subsampling. 
The results are plotted in Fig. 12 with the subsample size on the x‐axis and the value of ε 
required to achieve the equivalent confidence interval on the y‐axis. These results show 
that even small values of ε suffice to match the accuracy of subsampling. Thus, in this case, 
the Laplace mechanism with commonly used privacy parameters around ε = 1 is likely to 
provide better accuracy than subsampling. 

Monitoring Utility 

Before publishing differentially private statistics, it is a good practice to check that the 
utility of the results correspond to what was expected. This step is particularly important 
when the data release is long‐lived. For a single release, testing can be performed manually. 
When releasing many statistics or in automated releases over time, the testing process typ‐
ically needs to be automated. In both cases, the testing process should check for software 
bugs and distributional shifts in the underlying data that might invalidate past assumptions 
made during mechanism design. 

Checking utility in this way involves computing exact metrics from the private data, so it is 
not differentially private. It is therefore important to ensure that the testing process itself 
does not leak information about the private data. Testing results should not be released 
publicly, and should generally yield only a binary (“yes” or “no”) result. When the test fails, 
the root cause can be investigated manually and the issue fixed. Finer‐grained approaches, 
like only releasing the parts of the data that have good enough accuracy, impact privacy 
guarantees much more negatively, and should be avoided. 
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3.3. Bias 

Systems that process data can introduce or magnify various kinds 
of bias that can negatively impact the validity of conclusions 
drawn from the results. NIST Special Publication (SP) 1270, To‐
wards a Standard for Identifying and Managing Bias in Artificial 
Intelligence [40], defines three important categories of bias: 

Utility Bias

Algorithms & Correctness

Data Collection Exposure

Side Channels Security Access Control

Trust ModelQuery Model

Unit of Privacy

ε

Bias

Section 2

Section 3

Section 4

• Systemic bias results from existing rules, processes, or 
norms that advantage certain social groups and disadvantages others. 

• Human bias results from failures in the heuristics that hu‐
mans use to make decisions. 

• Statistical bias occurs when the expected value of an esti‐
mator differs from the true value of its parameter in the 
population. 

Data‐processing algorithms of all types have the potential to magnify or create all three 
types of bias, and differentially private algorithms have been shown to create one or more 
types of bias. This section describes how bias can result from the use of specific differ‐
entially private algorithms, and gives guidelines for understanding that bias and choosing 
alternative differentially private algorithms or mitigation measures. The essence of what 
makes a bias assessment low or high risk is distilled in a flowchart, shown in Fig. 13. 

Fig. 13. A flowchart for determining whether or not a bias assessment is low or high risk. 
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3.3.1. Systemic Bias 

Systemic bias results from rules, processes, or norms that advantage certain social groups 
and disadvantage others. The use of data can perpetuate and magnify systemic bias in 
many different contexts. This effect is perhaps most clearly visible in machine learning and 
other forms of artificial intelligence (AI), where numerous results have demonstrated the 
tendency of AI systems to “learn” and magnify systemic biases encoded in the data used 
to train them [40]. 

Recent work has also demonstrated that the use of differential privacy can make this prob‐
lem worse [41]. In a relative sense, the noise introduced by differentially private algorithms 
impacts smaller groups more than larger ones. Since marginalized social groups are often 
smaller than advantaged ones (and are sometimes underrepresented in the underlying 
data), the noise can magnify or even create biases in the differentially private results. 

Some differentially private algorithms can magnify disparate impacts on small groups. Fig‐
ure 14 shows two bar charts that count population by race in a single U.S. Census Bureau 
district in Massachusetts [42]. Each figure includes error bars (in red) that demonstrate 
the 95% confidence interval for the error introduced by differential privacy noise on each 
bar chart bin. The only difference between the two figures is the value of the privacy pa‐
rameter ε . As expected, the lower value of ε produces more error, so the error bars are 
proportionally larger. The y‐axis is plotted on a logarithmic scale to accommodate the vari‐
ation in bin sizes. Note that for the lowest population race (i.e., American Indian), the 
error bar is larger than the population when ε = 1. For the higher population races, the 
error bars are proportionally smaller than the populations for both values of ε . All of the 
error bars in each figure have the same absolute size (they only have different visual sizes 
because of the logarithmic scale). However, the same absolute error may disproportion‐
ately impact small groups. In this example, when ε = 1, there is a chance that the noise 
required by differential privacy will reduce the American Indian population to zero. For 
larger populations, this kind of extreme impact is virtually impossible. 

Privacy Hazard: Differential pri‐
vacy can magnify or create sys‐
temic bias. 

Open Question: Finding and 
mitigating systemic bias is an 
open area of research. Users 
of this publication may find [40, 
43–46] helpful for understand‐
ing the considerations. Differential privacy can also magnify disparate im‐

pacts in machine learning. Figure 

This type of bias is an unavoidable property of any 
robust anonymization mechanism, and is not unique 
to differential privacy. In the example, the true pop‐
ulation count for American Indian in the U.S. Census 
district is exactly 1: it refers to the data of a single 
person in the dataset. It is fundamentally impossi‐
ble to both accurately convey this information and 
adequately protect the data of all individuals in the 
input dataset. 

15 shows the ac‐
curacy of a machine learning classifier trained on the same census data as the previous 
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Fig. 14. Two bar charts of population count by race in a single U.S. Census Bureau district in 
Massachusetts computed with differential privacy for ε = 1 (left) and ε = 10 (right). 
Confidence intervals are displayed in red overlaying each bar. 

example [42]. The classifier is trained to predict an individual’s housing type (i.e., single 
family versus multi‐family housing) from other attributes of that individual. Many classi‐
fiers with different values of ε were trained, and the accuracy of the trained classifiers was 
separately plotted for (1) the majority race in the data and (2) records with the race “Na‐
tive Hawaiian and Other Pacific Islander.” The results show that the classifier is actually 
more accurate for the minority group than for the majority group at very large values of ε , 
but the noise required for differential privacy affects the minority group much more than 
it does the majority group. In practice, this means that models trained with differential 
privacy may produce lower‐quality outputs for minority groups. Perfect approaches for 
mitigating this effect are not known, but it is helpful to test carefully for output quality 
across all subgroups and to ensure balance between classes during training. 

3.3.2. Human Bias 

Human bias results from the heuristics that humans use to make decisions based on data. 
Common examples include confirmation bias (i.e., believing data that supports one’s be‐
liefs) and anchoring bias (i.e., believing the first piece of data received). 

Human bias has the potential to negatively impact belief in the validity of differentially 
private results. In particular, individuals may believe that differentially private results are 
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Fig. 15. Classifier accuracy for a machine learning classifier trained on U.S. Census data with 
differential privacy for various values of ε. 
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invalid because they know that noise has been added to the results or the results do not 
conform to typical expectations of what “good data” looks like (e.g., differentially private 
bar charts may contain fractional or negative counts). 

Privacy Hazard: Before deploy‐
ing interventions to address 
sources of human bias, carefully 
consider the other impacts of
those interventions. 

Interventions that attempt to address potential hu‐
man bias resulting from the use of differential pri‐
vacy may actually introduce other kinds of bias. 
For example, differentially private counts are often 
rounded to the nearest integer and forced to be 
non‐negative on the assumption that data recipi‐
ents might be concerned by fractional or negative counts that do not “look like” non‐
differentially‐private results. However, these changes can actually harm the results by 
introducing statistical bias. 

3.3.3. Statistical Bias 

Privacy Hazard: Differential pri‐
vacy mechanisms can introduce 
statistical bias. It is important to 
understand, quantify, and eval‐
uate the statistical bias present 
in any differentially private data 
release. 

The statistical bias of a mechanism refers to a differ‐
ence between the true query result f (x) and the ex‐
pected value (i.e., the average over many samples) 
of the mechanism’s output. For example, the sta‐
tistical bias of the Laplace mechanism is E[ f (x) − 
Lap(∆1/ε)] − f (x). The equation can be rearranged 
to E[Lap(∆1/ε)], and the Laplace distribution cen‐
tered at zero has an expected value of zero. 

38 



NIST SP 800‐226 Guidelines for Evaluating 
March 2025 Differential Privacy Guarantees 

Fig. 16. A plot of average error due to statistical bias of changing negative counts to zero vs 
choice of ε. 
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However, not all differential privacy mechanisms are unbiased. Some mechanisms can 
introduce statistical bias (an example appears in Sec. 3.4.2). In addition, post‐processing 
approaches designed to improve data quality or reduce human bias can also result in sta‐
tistical bias. Statistical bias must be considered as part of a utility analysis of a mechanism. 

Some post‐processing approaches used with privacy‐preserving mechanisms can result in 
statistical bias. Figure 16 shows the total absolute error due to statistical bias of changing 
negative counts to 0 in the bar chart example from Sec. 3.3.1. The results show that this 
bias increases as the privacy parameter ε decreases. This type of post‐processing does not 
impact privacy, but can introduce a tradeoff between bias and variance that impacts utility. 
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Fig. 17. A flowchart for determining whether or not an algorithm design and implementation 
process is low or high risk. 

3.4. Analytics Queries 

This section describes various algorithms for achieving differential privacy to build intuition 
for how differential privacy works, and for the degrees of freedom within the space of al‐
gorithm design. These descriptions alone are not suitable to use as the primary basis for 
implementing production‐grade differentially private solutions. Where possible, existing 
libraries that are reputable and well‐tested should be preferred to inventing one’s own im‐
plementation, subject matter experts should be utilized when designing and implementing 
algorithms, and reputable third party auditors should be consulted to ensure designs and 
implementations are free of design errors, implementation errors and side channels. The 
essence of what makes an algorithm design and implementation process low or high risk 
is distilled in the flowchart shown in Fig. 17. 

3.4.1. Counting Queries 

This section describes how to answer counting queries with dif‐
ferential privacy. A counting query counts the number of rows in 
a dataset with a particular property. While they seem simple or 
trivial, counting queries are used extremely often and can express 
many useful business metrics, such as the number of transactions 
that took place in a given week or which market has produced the 
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most sales. 

Counting queries are often the basis for more complicated analyses as well. For exam‐
ple, the U.S. Census Bureau releases data that is essentially constructed by issuing many 
counting queries over sensitive raw data collected from residents.9 

9While most of the primary Decennial Census releases (PL94‐171 Redistricting, Demographic and Housing 
Characteristics products) consist of counts, this is not true of all Decennial Census releases, and even less 
so across all U.S. Census Bureau releases, which include non‐counting queries such as medians, averages, 
and outputs of various models. 

Each of these queries 
belongs in the class of counting queries discussed in the following sections and computes 
the number of people living in the U.S. with a particular set of properties (e.g., living in a cer‐
tain geographic area, having a particular income, belonging to a particular demographic). 

Defining Counting Queries 

Consider two examples of counting queries. The result of the first is a single number, and 
the second is a specific form of counting query called a bar chart that reports multiple 
counts derived from disjointed parts of the dataset. 

Example: Counting Query. How many pumpkin spice lattes were purchased in Octo‐
ber? 

Example: Bar Chart. For each month, how many pumpkin spice lattes were purchased 
in that month? 

Achieving Differential Privacy 

To achieve differential privacy with counting queries, noise is added to the raw count that 
is proportional to the sensitivity of the query. Many counting queries have low sensitivity, 
and for these queries it is often possible to achieve high utility over a single table. 

Privacy Hazard: When bound‐
ing user contributions, addi‐
tional noise must be added to 
ensure user‐level privacy. 

When bounding user contributions, more noise is 
required to compensate for the fact that each indi‐
vidual may contribute multiple records. Even in this 
case, it is often possible to achieve good utility for 
counting queries. See Appendix Sec. B.3 for techni‐
cal details. 

Binned Data: Histograms & Time Series 

For a bar chart, noise can be added to each “bin” of the result individually since each 
individual in the data will appear in exactly one “bin” of the result. However, there is a 
subtle but important difference: the result of a bar chart query reveals the identities of 
the bins in addition to the count for each one, and the presence or absence of a bin can 
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reveal information about an individual. Database systems commonly infer the set of bins 
from the data. For example, if no pumpkin spice lattes were purchased in June, then the 
resulting bar chart would not even contain a bin for June, thus implicitly revealing a “count” 
of zero pumpkin spice lattes with no noise at all. 

Privacy Hazard: In differen‐
tially private bar charts, reveal‐
ing the bar chart bins may vio‐
late privacy. To avoid this, the 
analyst must either determine 
the bins ahead of time before 
processing the data, or use spe‐
cific algorithms that determine 
and reveal the bins without vio‐
lating privacy. 

To address this additional information leakage, the 
analyst must specify the set of bins in advance, and 
the bar chart must report a count for every bin in 
the set, even if the count is zero. Then, noise can be 
added to each count (including the zeros) and cor‐
rectly satisfy differential privacy. 

Specifying bins is an additional burden on the ana‐
lyst that is not typical in traditional database query 
languages. Sometimes, specifying the bins is easy 
(e.g., if the bins are the months of the year). How‐
ever, when the bins themselves are complex, the 
burden of specifying them manually can be significant. Techniques do exist for automat‐
ically determining the set of bar chart bins from the data without violating differential 
privacy [47], which can help to eliminate this additional burden. However, the accuracy of 
these techniques is data‐dependent, which complicates understanding of utility. 

Utility 

For a single count, the Laplace mechanism generally yields better accuracy than the Gaus‐
sian mechanism (as described earlier, this is not always the case, and more precise calcula‐
tions can be used to make sure). The Gaussian mechanism works best when L1 sensitivity 
grows much faster than L2 sensitivity, which often happens when adding noise to many 
statistics at once (e.g., when answering a workload of hundreds or thousands of prespeci‐
fied queries), and when a single unit of privacy can contribute to many of these statistics. 

When using the basic Laplace or Gaussian mechanism, the noise is determined by the 
query’s sensitivity, which is independent of the size of the group being counted. The same 
amount of noise is added whether the count is 20 or 20 million. This means that the ab‐
solute error one can expect is constant. However, the relative error is smallest when the 
size of the group being counted (i.e., the signal) is large. As group size gets smaller, the 
strength of the signal goes down while the noise remains the same, resulting in higher 
relative error. 

In a bar chart, the group size associated with each “bin” (i.e., the signal) tends to go down 
as the number of groups goes up. Thus, finer‐grained differentially private bar charts that 
break down results across more categories tend to result in higher relative error than 
coarser‐grained bar charts. 
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Key Takeaway: To minimize relative error in differentially private statistical analyses, 
minimize the number of data groups. 

3.4.2. Summation Queries 

A summation query calculates the sum of specific values. For example, a summation‐query 
could return the sum of the transaction amounts for all pumpkin spice latte purchases in 
a year. 

Example: Summation query. What is the total amount spent on pumpkin spice lattes 
since 2010? 

For a summation query, the amount of noise needed to achieve differential privacy de‐
pends on the maximum value of the things being summed up. As a result, the mechanism 
must enforce that each summand is bounded by fixed upper and lower bounds—a process 
called clipping or clamping. These bounds—called the clipping parameter—must either 
be specified by the analyst before processing the data, or automatically determined using 
some of the privacy budget [48]. For large datasets, it is often possible to achieve good 
utility with differentially private summation queries. See Appendix Sec. B.4 for technical 
details. 

Key Takeaway: Differentially private summation queries require fixed upper and lower 
bounds on data elements, which must be given without looking at the data, or au‐
tomatically determined from the data using a differentially private mechanism. The 
bounds should generally be as small as possible to reduce noise while ensuring that 
only extreme outliers fall outside of the bounds. 

Utility 

Utility for summation queries is typically measured using the same metrics as counting 
queries. In addition, the clipping parameter can introduce bias in the results by reducing 
large values while preserving small ones. Utility analysis of summation queries should 
measure and consider this bias. 

The clipping parameters (i.e., the upper and lower limits) are extremely important for ac‐
curacy. If the upper limit is too high, it will add unnecessary noise. If it is too low, then 
information that was present in the data will be lost by modifying too many of the data 
points (i.e., introducing bias). Some methods for determining clipping parameters require 
inspecting the data. Such methods could potentially leak sensitive information, and so 
should either be avoided or performed with careful analysis of the privacy risks involved. 
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3.4.3. Average Queries 

An average query determines the mean of a set of values. 

Example: Average Query. What is the average amount spent on pumpkin spice lattes 
since 2010? 

An average query can be decomposed into a summation query and a counting query, and it 
can be answered with differential privacy via such a decomposition (see Appendix Sec. B.5 
for technical details). Differentially private averages can yield high utility for large datasets. 

Utility 

The same metrics are used to evaluate average queries as summation queries. Because 
this process incorporates a summation query, it has the potential to introduce bias into 
the results. Like summation and counting queries, the best relative error will be achieved 
when group sizes are large and the clipping parameter is set appropriately. 

3.4.4. Min/Max Queries 

Two other aggregation functions commonly available in database engines and used in sta‐
tistical analysis are the minimum (min) and maximum (max). These are not commonly 
used in differentially private analyses because they have unbounded sensitivity. These ag‐
gregation functions do not really aggregate multiple values from the data. Rather, they 
return a single data element that represents the max or min, potentially degrading the 
privacy of the individual corresponding to that value. 

When an estimate of dataset scale (i.e., the size and shape of the data) is needed, dif‐
ferentially private quantile estimation [49, 50] can be used instead of the min and max 
functions. 

3.5. Machine Learning 

Machine learning techniques are often used to understand data, 
and deep learning techniques have become especially popular be‐
cause of their capabilities in complex domains like vision and lan‐
guage. 

Common machine learning techniques, including the neural net‐
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works used in deep learning, start with a model that has trainable 
parameters. The model can be used to perform a task (e.g., recognizing pictures of pump‐
kin spice lattes), and the parameters control how the model operates. The training process 
is designed to set the model parameters so as to maximize the model’s ability to perform 
its task on the training data. For example, a training dataset might contain some pictures 
of pumpkin spice lattes and some pictures of other objects. The goal in training would be 
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to set the parameters so that the model correctly identifies all of the pictures of pumpkin 
spice lattes, and does not identify the other objects as pumpkin spice lattes. 

Privacy Risks in Machine Learning 

Privacy Hazard: Machine learn‐
ing techniques do not automat‐
ically protect privacy. Neural 
networks are particularly sus‐
ceptible to memorizing training 
data. 

In the past few years, strong privacy attacks against 
trained models have sometimes allowed an attacker 
to learn information about the training data used to 
train the model. This can raise serious concerns for 
models trained on sensitive data (e.g., medical diag‐
nosis models trained on x‐ray data or language mod‐
els trained on private emails). 

Deep neural networks are particularly susceptible to these kinds of attacks. Recent work 
has shown that deep neural networks often memorize their training data [51], and tech‐
niques like membership inference attacks [52] can leverage this kind of memorization to 
detect whether or not a particular data element was used to train the model. Other kinds 
of attacks have been used to directly extract training data from image recognition mod‐
els [53], image generation models [54], and large language models [55, 56]. 

Achieving Differential Privacy 

To defend against privacy attacks in machine learning, a significant amount of research 
has explored how to train differentially private models [57–60]. The most commonly used 
technique is called differentially‐private stochastic gradient descent (DP‐SGD) [58] (see Ap‐
pendix Sec. B.6 for technical details). 

Differentially private implementations are also available for boosted decision trees, k‐means 
clustering, graph analysis, item and set extraction, model alignment, few‐shot learning, 
and similar common machine learning and data processing methods [61–70]. In general, 
a differentially private implementation of a common data processing algorithm will yield 
favorable privacy‐utility tradeoffs compared to generating a differentially private synthetic 
dataset first, followed by applying the standard (non‐private) version of the algorithm. 

Utility 

Adding differential privacy to the training process using current techniques typically lowers 
accuracy, sometimes significantly [71]. 

In general, two major factors influence the accuracy of differentially private machine learn‐
ing. First, simple models are much easier to train with privacy from scratch than are com‐
plex models. Complex models, like deep neural networks, can have millions or billions of 
trainable parameters and are more likely to be affected by the noise added for differential 
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privacy. Large models that have been pre‐trained on public data can show strong privacy‐
utility tradeoffs when fine‐tuned or trained in a continued pretraining regime using DP‐SGD, 
and this privacy‐utility tradeoff appears to improve with model size [72–74]. However, not 
all publicly available information is necessarily non‐sensitive, and one should take care to 
ensure that any publicly available information used to pre‐train large models is indeed free 
of sensitive information. Simpler models, like linear models, can be much easier to train 
with differential privacy. Second, larger training datasets generally lead to more accurate 
models. As in the analytics queries discussed earlier, aggregating over larger groups gener‐
ally leads to better accuracy, and aggregating over smaller groups implies worse accuracy. 
With enough training data, differentially private approaches to machine learning can ap‐
proximately match the accuracy of non‐private training [59], but a large amount of data 
are often required. 

One effective approach for training differentially private neural networks is to perform 
pre‐training on publicly‐available data using standard non‐privacy‐preserving training algo‐
rithms, followed by fine‐tuning using a differentially private training algorithm. For exam‐
ple, a large language model might be pre‐trained on public‐domain text, then fine‐tuned 
on sensitive electronic health records. The pre‐training step initializes the model with gen‐
eral information about the English language, and the fine‐tuning step adds information 
about the target domain. The pre‐training step reduces the amount of information the 
model needs to learn from the sensitive data, and thus reduces the negative impact on 
accuracy of the noise used to achieve differential privacy. This approach has been shown 
to be effective for image models [59] and language models [75]. 

Key Takeaway: Current techniques for differentially private machine learning work 
best for simple models and very large training datasets. When public data is available, 
pre‐training using public data can improve accuracy. 

3.6. Synthetic Data 

A differentially private synthetic dataset is a synthetic dataset built 
with differential privacy. A synthetic dataset looks like the original 
dataset in that it has the same schema and attempts to maintain 
the properties of the original dataset (e.g., correlations between 
attributes). However, it consists of algorithmically generated data 
associated with “fake” individuals. Because it looks like the origi‐
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nal data, synthetic data are particularly easy to use. It can be analyzed using existing tools 
and workflows without modification. This section summarizes privacy considerations for 
synthetic data, and describes some approaches for constructing it. 

For the purposes of this document, we focus on synthetic data that was generated from 
potentially identifiable data. 
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Privacy Considerations for Synthetic Data 

Many techniques have been proposed for constructing synthetic data. Some are differen‐
tially private, while others are not. Nearly all of these techniques claim to provide some 
privacy benefits. 

Synthetic data techniques that do not satisfy differential privacy generally provide only 
informal privacy guarantees. They may appear to protect the privacy of individuals, but 
like the de‐identification techniques discussed earlier, they do not provide robust protec‐
tion against all privacy attacks. Recall that differential privacy is resistant to all privacy at‐
tacks, even attacks not yet invented. Non‐differentially private protections do not have the 
same resistance to future attacks. There are many reports of privacy attacks against non‐
differentially private synthetic data that have successfully revealed the original data [19]. 

Privacy Hazard: Synthetic data 
generated without differential 
privacy may be susceptible to 
privacy attacks. 

Differentially private synthetic data can be used to 
prevent these attacks. This section summarizes 
some techniques for generating synthetic data while 
satisfying differential privacy. Techniques that do 
not specifically satisfy differential privacy may not 
necessarily provide robust privacy protection. 

Key Takeaway: To provide robust privacy protection, including against novel devel‐
opments in privacy attacks, synthetic data should be generated using differentially pri‐
vate algorithms. 

Utility Considerations of Synthetic Data 

While synthetic data are convenient for downstream data users, it can also introduce utility 
challenges that are difficult to mitigate. In some cases, synthetic data can reduce accuracy 
for sub‐populations, leading to systemic bias [76]. Synthetic data can also complicate un‐
derstanding of the accuracy of statistics in the data. The synthetic data generation process 
adds additional sources of uncertainty to the statistical uncertainty in the original data. 
This error has the potential to propagate to downstream data uses. Similarly, bias intro‐
duced by the generative algorithms can also propagate error to downstream users. These 
utility challenges apply to all synthetic data, whether differentially private or not. 

Generating Synthetic Data 

Conceptually, all techniques for generating synthetic data—privacy‐preserving or not— 
start by building a probabilistic model of the underlying population from which the original 
data was sampled. This model is then used to generate new data. If the model is an accu‐
rate representation of the population, then the newly generated data will retain all of the 
properties of that population, but each generated data point will represent a “fake” indi‐
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Fig. 18. Generating a differentially private synthetic data using a marginal distribution. (PSL 
= Pumpkin Spice Latte) 

ID Product Total

6198 PSL $4.86

3687 Coffee $1.72

6372 PSL $4.81

8701 Latte $3.19

...

Product Count

PSL 3481

Latte 1394

Coffee 854

Total 5729

Product Noisy Count

PSL 3485.1

Latte 1382.3

Coffee 859.8

Total 5727.2

Product Noisy %

PSL 60.8%

Latte 24.1%

Coffee 15.0%

Original Data
Histogram Noisy Histogram

1-Way Marginal

Product

Latte

PSL

Coffee

PSL

...

Differentially Private 
Synthetic Data

vidual who does not actually exist. Building the model is the most challenging part of this 
process. Many techniques have been developed for this purpose, from simple approaches 
based on counting to complex ones based on deep learning. 

Differentially Private Synthetic Data via Private Marginals 

Imagine that one would like to generate synthetic sales data for a pumpkin spice latte 
company. One way to accomplish this would be to use a differentially private marginal 
distribution, as in Fig. 18. A bar chart could be constructed from the original tabular data 
by counting the number of each drink sold. Next, noise would be added to the bar chart to 
satisfy differential privacy. Finally, each noisy count would be divided by the total to deter‐
mine what percentage of all drinks were of a specific type. This final step would produce 
a one‐way marginal distribution since it would consider only one attribute of the origi‐
nal data and ignore correlations between attributes. The one‐way marginal distribution 
could then be used to generate a “fake purchase” using weighted randomness. A drink 
type would be randomly chosen with the randomness weighted according to the one‐way 
marginal distribution that has been generated. In the example in Fig. 18, 60.8% of the 
generated purchases should be pumpkin spice lattes, 24.1% should be lattes, and 15.0% 
should be regular coffees. 

Marginal distributions form the basis for many differentially private synthetic data algo‐
rithms. The major challenge of this approach is preserving correlations between data at‐
tributes. For example, sales data might include the customer’s age in addition to their 
preferred drink type, and age might be highly correlated with drink type (e.g., younger 
customers may be more likely to purchase pumpkin spice lattes than other drink types). 
The process used above can be repeated on both data attributes separately, but that ap‐
proach does not capture the correlation that was present between the two. 

This correlation can be preserved by calculating a two‐way marginal—a distribution over 
both data attributes simultaneously. However, this marginal has many more possible op‐
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tions (all of the possible combinations of age and drink type), and it will result in a weaker 
“signal” relative to the noise for each option. Preserving correlations like these requires 
a careful balance between the marginals being measured and the strength of the signal 
being preserved. 

Differentially Private Synthetic Data via Deep Learning 

Another way to build a model of the underlying population from the original data is with 
machine learning techniques. In the past several years, deep learning‐based methods for 
generating synthetic data have become more capable in some domains [60]. Approaches 
like generative adversarial networks (GANs)—a particular type of neural network—are par‐
ticularly good at generating convincing photos of imaginary people. The same approach 
can be used to generate synthetic data in other domains (e.g., latte sales data) by training 
the neural network on original data from the right domain. 

Generative models have been used extensively to produce non‐private synthetic data. As 
described earlier, these techniques do not necessarily provide robust privacy protection 
for individuals in the original dataset, and the resulting synthetic data may be susceptible 
to privacy attacks. If robust privacy protection is desired, a differentially private training 
algorithm like DP‐SGD must be used to train the generative model. 

Privacy Hazard: Current deep 
learning‐based approaches for 
differentially private synthetic 
data produce significantly lower 
quality data than approaches 
based on marginals. 

To achieve differential privacy, the neural network 
can be trained using a differentially private algo‐
rithm, like the DP‐SGD algorithm described earlier. 
If the neural network modeling the underlying popu‐
lation is trained with differential privacy, then by the 
post‐processing invariance property, the synthetic 
data it generates also satisfies differential privacy. 

Unfortunately, deep learning‐based approaches for differentially private synthetic data are 
currently much less useful than the marginal‐based approaches for low‐dimensional tabu‐
lar data (e.g., the data in the latte example). In fact, deep learning‐based approaches often 
fail to preserve even basic statistical properties of the original data. This difference is likely 
due to the model complexity challenges described earlier since generative models tend to 
be especially complex. 
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3.7. Unstructured Data 

Unstructured data often refers to text, pictures, audio, and 
video—formats that often lack structure that relates data to in‐
dividuals. This lack of structure sometimes makes it difficult to 
think about privacy. 

This lack of structure makes it difficult to define a meaningful unit 
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of privacy. Relying on ownership or authorship ignores the addi‐
tional people who may appear in unstructured data (e.g., a video that contains several 
people). Adding or removing all of a single owner’s data may not remove all presence of 
that person in the dataset, and may remove part of the presence of several other people. 

Due to these challenges, research in differential privacy has not focused on unstructured 
data. Existing techniques generally require specifying a unit of privacy (e.g., one minute/hour 
of video) that may represent a compromise in privacy. 

Privacy Hazard: For unstruc‐
tured data, defining the unit of 
privacy can be difficult or impos‐
sible because it is often unclear 
who (in addition to the owner) 
appears in a piece of data. As
a result, defining meaningful dif‐
ferential privacy guarantees for 
unstructured data is challeng‐
ing. 

If a suitable unit of privacy can be determined, then 
it is often possible to compute differentially private 
statistics and train machine learning models on un‐
structured data. In machine learning, there has 
been significant work on image recognition [58, 59, 
77], natural language processing [75, 78], and ob‐
fuscating the author of a text [79]. Differential pri‐
vacy has also been applied to video [80] and to mask 
patterns of communication (including metadata) in 
anonymous communication systems [81]. 

50 



NIST SP 800‐226 Guidelines for Evaluating 
March 2025 Differential Privacy Guarantees 

4. Deploying Differential Privacy 

This section describes practical concerns in deploying differen‐
tially private analysis techniques. Chief among these is the trust 
model (Sec. 4.2), which describes who can be considered trust‐
worthy and who should be considered malicious. This section 
also discusses several implementation challenges for differentially 
private mechanisms that can cause unexpected privacy failures 
(Sec. 4.3). The final subsections describe security concerns (Sec. 4.4) and data collection 
exposure (Sec. 4.5). 

Utility Bias

Algorithms & Correctness

Data Collection Exposure

Side Channels Security Access Control

Threat ModelQuery Model

Unit of Privacy

ε

Section 2

Side Channels Security Access Control

Section 3

Section 4
Data Collection Exposure

Query Model Trust Model

4.1. Query Models 

The deployment of differential privacy is separated into two com‐
mon models: the data release model and the interactive query 
answering model. The data release model is simpler and more 
trustworthy but is limited. The interactive query answering model 
is more flexible but more complex to deploy and, thus, more vul‐
nerable to security bugs in its implementation. Furthermore, risk 
from lack of side channel protections may be compounded due to the choice of query 
model. The essence of what makes a query model and side channel mitigation approach 
low or high risk is distilled in a flowchart, shown in Fig. 19. 
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Fig. 19. A flowchart for determining whether or not a query model and side channel 
mitigation approach is low or high risk in combination. 

In the data release model, the queries are known in advance and are often specified by 
the same organization collecting the data. The organization can collect the data, use dif‐
ferentially private mechanisms to answer the queries, and release the results all in one 
step. In the data release model, the predetermined queries generally attempt to describe 
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the population from which the data was collected. For example, they may generate bar 
charts (§3.4) or synthetic data (§3.6). The U.S. decennial census is one example of the data 
release model: the queries are prespecified by the U.S. Census Bureau and designed to de‐
scribe the U.S. population. The data release model is simpler than the alternatives, but it 
requires all queries to be specified in advance and does not allow new queries to be asked 
after the release. 

Privacy Hazard: Compared to 
the data release model, the
interactive query answering 
model raises significant ad‐
ditional challenges related to 
privacy budgeting and security. 

In the interactive query answering model, the 
queries are not known in advance, and analysts in‐
teract with a system designed to answer queries on 
an ongoing basis. Queries may be specified in large 
batches (i.e., a workload) or individually, and ana‐
lysts may or may not be members of the same orga‐
nization that collected the data. The query answer‐
ing model empowers analysts to specify their own custom queries at any time, which is a 
significant advantage over the data release model for some applications. However, com‐
pared to the data release model, the query answering model raises significant additional 
challenges in the areas of privacy budgeting and security. 

Privacy Budgeting 

In the data release model, the entire privacy budget can be allocated among the prede‐
termined queries, and the result is intended to adequately describe the important proper‐
ties of the original population. By the post‐processing invariance property of differential 
privacy, the results can be used by anyone as many times as desired without incurring 
additional privacy loss. 

In the interactive query answering model, each unique query answered by the system in‐
curs additional privacy loss and must count against the total privacy budget. In this context, 
budgeting requires forecasting how many queries the system will need to answer. If the 
budget runs out, then the system must either refuse to answer new queries—an outcome 
that may be extremely problematic — or allow for an increased total privacy budget, which 
will incur additional privacy risk. 

System Security and Malicious Analysts 

In the data release model, the original data can be discarded or archived in a high‐security 
environment after the differentially private results are calculated and released. This ap‐
proach provides strong protection against the accidental release of the original sensitive 
data (e.g., due to data breaches). The differentially private results can then be computed 
by a trusted party within the same organization that collects the data. In this context, it is 
reasonable to assume that the party computing the results will make an honest attempt to 
correctly implement differential privacy and will not intentionally issue queries that target 
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individuals. 

In the interactive query answering model, the original sensitive data must be kept avail‐
able for querying on an ongoing basis. The system that accesses the data must therefore 
be highly secure in order to avoid data breaches that expose this data. Ensuring this kind 
of security adds significant complexity to a query answering deployment compared to a 
data release. Analysts may not be trustworthy and may intentionally try to violate the 
privacy guarantee, especially if the query answering system is exposed to the public or 
to analysts outside of an organization. Query answering systems are complex, and imple‐
menting them correctly is challenging and costly. Even carefully designed systems are likely 
to have bugs that cause security vulnerabilities (see Sec. 4.3 for details). Malicious insiders 
may attempt to find and exploit these bugs to break the privacy guarantee and reveal the 
original sensitive data. 

Utility and Data Trustworthiness 

In the data release model, utility can be evaluated in a confidential manner by the trusted 
party before the results are released. This trusted party can make sure that the results are 
fit‐for‐use, and provide data analysts with guidance on what kind of analyses are going to 
produce accurate outcomes using differentially private data. 

In the interactive query answering model, accuracy information cannot be entirely con‐
veyed and evaluated to untrusted data analysts: some details, like noise scales used for 
underlying mechanisms, can be communicated, but others, like the impact of clipping 
thresholds on the utility of returned results, cannot easily be returned in a way that en‐
forces the desired differential privacy guarantee. This makes it difficult for data analysts 
to trust that the returned data are fit for use, and to quantify and account for the various 
kinds of inaccuracies that may have been introduced by the underlying differential privacy 
mechanisms. 

4.2. Trust Models 

A trust model describes assumptions about how trustworthy the 
components of a system are expected to be. In the setting of dif‐
ferential privacy, there is typically an assumption that final results 
will be released to the public. Since some members of the public 
may not be trustworthy, such results should be protected with 
a guarantee like differential privacy. However, the final results 
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might not be revealed to the public and instead revealed only to a smaller group of people. 
This section describes several different trust models that are commonly used for deploy‐
ments of differential privacy in terms of which participants in the system are trusted and 
which are untrusted. The essence of what makes a trust model low or high risk is distilled 
in a flowchart, shown in Fig. 20. 
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Fig. 20. An example flowchart for evaluating the appropriateness of a trust model. 

Definition: Trust Assumption. A trust assumption about a party describes how that 
party is expected to behave when they are given access to sensitive data. 

• A trusted party will keep sensitive data safe and will not reveal it to others. It 
is assumed that no privacy harms will result from sharing sensitive data with 
trusted parties. 

• An untrusted party may not keep sensitive data safe and may reveal it to others. 
Privacy harms may result from sharing sensitive data with untrusted parties. 

Most trust models for differential privacy are described in terms of the trust assumptions 
made about the following three parties: 

1. The data subjects: who the data are about 

2. The data curator: who aggregates the data 

3. The data consumer(s): who receive differentially private results 

In many cases, the set of data consumers is very large. For example, when differentially pri‐
vate results are released to the public, everyone is a member of the set of data consumers. 
In other cases, differentially private results are only released to certain people. 

Table 2 summarizes the trust assumptions made in some commonly used trust models for 
differential privacy. All of the models assume that the data subjects are trusted because 
differentially private systems are designed to protect the data subjects from the other par‐
ties, and there is no incentive for data subjects to cause privacy harms to themselves. The 
models differ in the trust assumptions for the other parties. 

In general, trust models that require fewer trusted parties are stronger, but stronger trust 
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Table 2. Common deployment models for differential privacy and their trust assumptions. 

Model Data Subjects Data Curator Data Consumer Details 
Central Model 

Local Model 

Shuffle Model 

Secure Computation 

Trusted 

Trusted 

Trusted 

Trusted 

Trusted 

Untrusted 

Untrusted∗ 

Untrusted∗ 

Untrusted 

Untrusted 

Untrusted 

Untrusted 

§ 4.2.1 

§ 4.2.2 

§ 4.2.3 

§ 4.2.3 
∗ indicates additional system‐dependent security assumptions. 

models often trade other desirable features in exchange for lower trust requirements. The 
rest of this section describes these trade‐offs in detail. 

Privacy Hazard: The trust as‐
sumptions made by a differ‐
ential privacy guarantee’s trust 
model must hold in the real 
world. A failure of any of the 
trust assumptions makes the
corresponding differential pri‐
vacy guarantee meaningless. 

When evaluating a differential privacy guarantee, 
the most important consideration is whether the 
trust model’s trust assumptions match reality. For 
example, in the central model of differential pri‐
vacy (described in Sec. 4.2.1), the curator must be 
trusted. If the central model is used with an untrust‐
worthy curator, then the differential privacy guaran‐
tee breaks down because the curator may simply re‐
lease the sensitive data to another party. The choice 
of trust model is therefore directly constrained by realistic assumptions about the trustwor‐
thiness of the parties involved. 

Trust in the real world is complicated, and it can be difficult or impossible to relate real‐
world ideas about the trustworthiness of a party to a precise trust assumption in a trust 
model. For example, a differential privacy guarantee that requires an assumption of trust 
in the curator (e.g., central differential privacy) may be better than no guarantee at all, 
even when the data subject may not completely trust the curator in all respects. 

4.2.1. Central Model 

The most commonly used trust model in differential privacy research is called the central 
model of differential privacy (or simply, “central differential privacy”). This trust model is 
summarized in Fig. 21. 

The key component of the central model is a trusted data curator. Each individual submits 
their sensitive data to the data curator, who stores all of the data in a central location (i.e., 
on a single server). The data curator is trusted in that users assume that they will not look 
at the sensitive data directly, will not share it with anyone, and cannot be compromised 
by any other adversary. In other words, with this model, there is an assumption that the 
server holding the sensitive data cannot be hacked. 
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Fig. 21. Central model of differential privacy 
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Fig. 22. Local model of differential privacy 
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In the central model, noise is typically added to results, as in the analyses described in 
Sec. 3. The advantage of this model is that it allows algorithms to add the smallest possible 
amount of noise and therefore produce results with the maximum accuracy allowed under 
differential privacy. The figure below demonstrates this process. The privacy barrier is 
placed between the trusted data curator and the data consumer. To the right of the privacy 
barrier, only differentially private results can be viewed, so the data consumer does not 
need to be trusted. 

The disadvantage of the central model is that it requires a trusted data curator, and many 
data curators are not considered trustworthy. In fact, a lack of trust in the data collector is 
often a primary motivation for the use of differential privacy. 

4.2.2. Local Model 

The local model of differential privacy addresses the security issue in the central model by 
eliminating the trusted data curator. Each individual adds noise to their own data before 
sending it to the data curator. This means that the data curator never sees the sensitive 
data and does not need to be trusted. Fig. 22 demonstrates the local model, where the pri‐
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vacy barrier stands between the data subjects and the (untrusted) data curator. Even if the 
data curator’s server is hacked, the hackers only see noisy data that already satisfy differ‐
ential privacy. This is why the local model was adopted for Google’s RAPPOR system [82] 
and Apple’s data collection system [83]. 

However, the local model produces less accurate answers than the central model. In the 
local model, each individual adds enough noise to satisfy differential privacy. Thus, the to‐
tal noise for all participants is much larger than the single noise sample used in the central 
model. As a result, the local model is only useful for queries with a very strong “signal.” 
Apple’s system, for example, uses the local model to estimate the popularity of emojis, but 
the results are only useful for the most popular emojis (i.e., where the “signal” is strongest). 
The local model is typically not used for more complex applications like machine learning. 

4.2.3. Future Directions: Shuffle and Secure Computation Models 

The central and local models of differential privacy offer a stark trade‐off between trust 
assumptions and accuracy. A significant amount of recent research has investigated new 
ways to achieve the higher accuracy of the central model under the stronger trust assump‐
tions of the local model. This section summarizes two approaches that are still in the early 
stages of development and have not yet been used in large‐scale deployments. 

One approach is the shuffling model, first implemented in Prochlo [84]. The shuffling 
model includes an untrusted data curator, individual data contributors, and a set of par‐
tially trusted shufflers. In this model, each individual adds a small amount of noise to 
their own data and submits that data to the shuffler, which adds additional noise before 
forwarding batches of data to the data curator. It is assumed that shufflers are unlikely to 
collude with the data curator or each other, so the small amount of noise added by individ‐
uals is sufficient to guarantee privacy. Each shuffler operates on a batch of inputs (same as 
the central model), so a small amount of additional noise guarantees privacy for the whole 
batch. The shuffling model is a compromise between the local and central models—it adds 
less noise than the local model but requires more noise than the central model. 

Another approach is to combine differential privacy with techniques from cryptography, 
such as secure multi‐party computation (MPC) or fully homomorphic encryption (FHE). FHE 
allows for computing on encrypted data without decrypting it first, and MPC allows a group 
of parties to securely compute functions over distributed inputs without revealing the in‐
puts. Computing a differentially private function using secure computation is a promising 
way to achieve the accuracy of the central model with the security benefits of the local 
model. In this approach, the use of secure computation eliminates the need for a trusted 
data curator. Recent work [85–87] demonstrates the promise of combining MPC and dif‐
ferential privacy to achieve most of the benefits of both the central and local models. In 
most cases, secure computation is several orders of magnitude slower than native execu‐
tion, which is often impractical for large datasets or complex queries. However, secure 
computation is an active area of research, and its performance is improving quickly. 
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Secure hardware enclaves (also known as trusted execution environments) are special 
security‐enabled CPUs that can provide security for data during computation by decrypt‐
ing data only within the CPU itself, such as Intel’s Software Guard Extensions (SGX), AMD’s 
Secure Encrypted Virtualization (SEV), and ARM’s TrustZone. Such platforms promise sim‐
ilar capabilities to the cryptographic techniques described above but with significantly en‐
hanced performance. However, these platforms are still under development, and several 
existing hardware enclaves have been vulnerable to attacks that can extract sensitive data. 

Secure multi‐party computation, homomorphic encryption, and trusted execution envi‐
ronments are often cited as examples of privacy‐enhancing technologies, since they are 
capable of hiding data during execution. Alone, none of these techniques can replace dif‐
ferential privacy; however, combining one or more of these techniques with differential 
privacy can enable new applications of differential privacy. 

4.3. Mechanism Implementation Challenges 

The private mechanisms introduced in the preceding sections 
were described using analytical equations, but in order to use 
them, they have to be implemented on computers. This section 
gives an overview of the subtle differences between the math and 
the implementation that can cause unexpected failures in privacy. 
Because of these challenges, it is best to use existing well‐tested 
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libraries whenever possible. In many cases, the developers of these libraries have worked 
to understand the potential implementation‐based sources of privacy failure and have ad‐
dressed the ones identified. Not every library provides solutions for all of these challenges; 
Appendix B.7 provides guidance for evaluating specific software libraries. Furthermore, 
risk from lack of side channel protections may be compounded due to the choice of query 
model. The essence of what makes a query model and side channel mitigation approach 
low or high risk is distilled in a flowchart, shown in Fig. 19. 

Floating-Point Arithmetic 

Previous sections have described the Laplace and Privacy Hazard: Implementing 
differential privacy mechanisms 
is tricky and requires consid‐
ering side‐channel vulnerabili‐
ties. 

Gaussian mechanisms in terms of infinite‐precision 
real numbers. On computers, floating‐point num‐
bers are typically used instead. Since the floating‐
point representation has finite precision, there are 
some real numbers that simply cannot be repre‐
sented using floating‐point numbers. When noise is added to a sensitive floating‐point 
number, the set of representable noisy values depends on the sensitive value. This means 
an adversary may be able to infer something about the sensitive value from the noisy value, 
by leveraging knowledge about what floating‐point outputs are possible [88]. 
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The impact of floating‐point imprecision on differential privacy implementations has been 
known for more than a decade [88], and techniques for addressing the associated chal‐
lenges have been developed and implemented in most (but not all) libraries designed for 
practical use. The basic mechanisms in these libraries will generally be safer to use than 
custom‐built implementations that do not take floating‐point imprecision into account. 

Timing Channels 

In some cases, the time it takes to run a query may reveal something about the underlying 
data. This risk is especially pronounced if untrusted analysts are allowed to write their 
own queries and measure how long it takes to receive the answer. For example, it might 
be possible to write a program whose running time reveals whether or not Joe is a part of 
the data with 100% certainty: 

Example: Timing Channel Attack. 

if Joe in Data: 
return slowQuery() 

else: 
return fastQuery() 

In many settings, timing is not an issue because analysts are not allowed to design and sub‐
mit their own queries, or they are not able to observe how long those queries take to run. If 
analysts can submit their own queries and measure running time, careful implementations 
must be used to hide the information revealed by the running time. 

Backend Issues 

In actual deployments where datasets may contain millions or billions of rows, it makes 
sense to reuse existing infrastructures to store and query data. Therefore, many systems 
for differentially private analysis leverage existing databases or distributed data processing 
solutions that were not originally designed for differentially private analysis. 

This distinction can lead to the unexpected loss of privacy. For example, some database 
engines throw an error if a query attempts to divide by zero, so a malicious analyst might 
craft a query that divides by zero exactly when their target individual is part of the dataset. 
In this case, observing whether or not an error is thrown is a direct violation of privacy. 

As in the case of timing channels, these concerns are less serious when analysts are not 
allowed to interact with the system directly. When analysts are allowed to craft their own 
queries and observe the results, it is important to ensure that the underlying systems that 
make up the differentially private query infrastructure do not contain additional channels 
that might leak private information, as in the example above. 

59 



NIST SP 800‐226 Guidelines for Evaluating 
March 2025 Differential Privacy Guarantees 

Tuning Hyperparameters 

Many differential privacy mechanisms have tunable hyperparameters that must be set 
carefully to ensure utility, and the settings are often data‐dependent. The clipping pa‐
rameter used in summation queries and described in Sec. 3.4.2 is a good example—if the 
parameter is set too high, too much noise may be added, but if the parameter is set too low, 
clipping may introduce substantial bias. How should such hyperparameters be chosen? 

A natural approach is to try different mechanisms and hyperparameters, measure the ac‐
curacy of the results obtained for each combination, and select the best‐performing one. 
However, if this accuracy measurement is done using the private data, this step is not 
differentially private, and the choice of hyperparameters and mechanisms itself can leak 
information about the data [89]. 

One solution is to use non‐sensitive data to perform the tuning. For example, tuning can 
be done with a historical dataset that was released previously, or with a synthetic dataset 
whose scale and distributional properties is expected to be similar to those of the actual 
sensitive dataset that will be used for deployment. Another solution is to use differentially 
private algorithms to perform the tuning [89]. 

4.4. Data Security and Access Control 

The security of data plays an important role in the overall privacy 
guarantee, even though technologies for security perform a dif‐
ferent function than differential privacy. These technologies con‐
trol who can access the data, rather than what can be learned 
from the data. Many of the techniques described earlier require 
direct access to the original noise‐free data. In the event of a data 

Utility Bias

Algorithms & Correctness

Data Collection Exposure

Side Channels Security Access Control

Trust ModelQuery Model

Unit of Privacy

ε

Section 2

Security

Section 3

Access Control Section 4

breach, the release of the original data makes the differential privacy guarantee meaning‐
less. For this reason, data should be protected with strong security measures, both at rest 
(i.e., when it is being stored for later use) and during computation. Measures for protecting 
data at rest include encryption (combined with careful key management), access control, 
and strong system security. For more guidance on security and privacy controls relevant 
to reducing privacy risk in information systems, see NIST SP 800‐53 Rev. 5 [90] and NIST SP 
800‐161 Rev. 1 [91]. 

Privacy Hazard: Failures in
data security can result in data 
breaches that make differen‐
tial privacy guarantees mean‐
ingless. 

Protecting data during computation is more chal‐
lenging because computing on data typically re‐
quires decrypting it. This challenge has grown in re‐
cent years with the rise of cloud computing. As men‐
tioned in Sec. 4.2, cryptographic techniques, hard‐
ware enclaves, and novel system architectures can 
help address this challenge, but all of these are active areas of research and have not been 
commonly deployed. 
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Access control policies describe who is allowed to access the data. For example, if the data 
are encrypted, an access control policy might say who has the keys. 

Privacy Hazard: Failures in ac‐
cess control policy can result in 
data breaches that make differ‐
ential privacy guarantees mean‐
ingless. 

For many security mechanisms, including encryp‐
tion, data only remains secure if the individuals who 
have access to it are trustworthy. Some of the tech‐
niques discussed in Sec. 4.2 can help shift the trust 
requirements for a differentially private system. 

4.5. Data Collection Exposure 

The majority of this publication has explored the technical fea‐
tures of a differential privacy guarantee with the assumption that 
users will know ahead of time what they want to learn and what 
sensitive data is needed in order to learn it. This is a strong as‐
sumption that is often untrue in practice. 

Utility Bias

Algorithms & Correctness

Data Collection Exposure

Side Channels Security Access Control

Trust ModelQuery Model

Unit of Privacy

ε

Section 2

Section 3

Section 4
Data Collection Exposure

The strongest possible approach to privacy is to not collect the 
data to begin with. Before evaluating if differential privacy is an appropriate framework to 
use in a data release, it is important to consider whether the data being analyzed needs to 
be collected at all. In some cases, it may be possible to collect less data and still achieve 
the desired final results. 

Privacy Hazard: Differential 
privacy does not eliminate the
risks associated with collecting 
sensitive data. Organizations 
should minimize data collection, 
even when using differential pri‐
vacy. 

By offering strong privacy protection for individu‐
als, differential privacy might appear to eliminate 
the risks associated with collecting too much data. 
However, the use of differential privacy can reduce 
but not eliminate these risks, as demonstrated by 
the privacy hazards described throughout this doc‐
ument. The application of differential privacy is not 
an excuse to collect more data than necessary. 

Surprisingly, collecting more information can sometimes enable stronger differential pri‐
vacy guarantees. For example, an organization may avoid collecting user identifiers in or‐
der to reduce the risk associated with collecting this information, but a lack of user iden‐
tifiers can make it impossible to bound user contributions to provide a user‐level unit of 
privacy (as described in Sec. 2.4). 

4.6. Conclusion 

Differentially private algorithms are currently the best known method for providing robust 
privacy protection against known and future attacks, even in the face of multiple data re‐
leases. This publication has summarized just a few of the many kinds of data analyses that 
can be accomplished with differential privacy, and current research is expanding these 
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capabilities every year. In addition, an increasing number of open‐source libraries and 
systems are starting to bring these techniques into practice. 

This publication has described important considerations for implementing differential pri‐
vacy and key hazards in evaluating differential privacy guarantees. The privacy parameter 
ε and the unit of privacy are particularly important since differential privacy provides very 
little protection when these parameters are not set appropriately. The whole system im‐
plementing a differential privacy guarantee should also be carefully considered, including 
security measures used to protect sensitive data while it is being processed. Weak differ‐
ential privacy guarantees risk becoming instances of privacy theater—measures that claim 
to protect privacy but actually fail to do so. This publication is intended to help practition‐
ers tell the difference between stronger and weaker differential privacy guarantees and 
deploy differential privacy in ways that actually provide robust privacy protection. 

This publication is also intended to be a first step toward building differential privacy guar‐
antee standards that provide parameter settings and solutions for all of the privacy hazards 
described in this publication (e.g., the value of ε , the unit of privacy, etc.). For some haz‐
ards, a standard should describe specific measures that practitioners should take to ensure 
that their deployments are free of problems known to undermine the privacy guarantee or 
lead to other issues (e.g., mechanism implementations are bug‐free, results do not mag‐
nify bias, data collection is minimized, and sensitive data are properly secured). Such a 
standard would allow for the construction of tools to evaluate differential privacy guaran‐
tees and the systems that provide them as well as certification that systems conform with 
the standard. The certification of differential privacy guarantees is particularly important 
given the challenge of communicating these guarantees to non‐experts [92]. A thorough 
certification process would provide non‐experts with an important signal that a particular 
system will provide robust guarantees without requiring them to understand the details 
of those guarantees. 

We hope that the path to standardization will parallel the successful development of cryp‐
tography from theoretical ideas to practical implementations and then to robust standards. 
However, the path to standardization in differential privacy may be even more challenging 
than it was in cryptography. There are still parameters that are not yet fully understood 
(e.g., the impact of ε on real‐world privacy), and differential privacy imposes an inherent 
trade‐off between privacy and utility that can be hard to navigate. Moreover, managing 
this trade‐off requires considering the often conflicting interests of multiple stakeholders. 
For example, data analysts may prioritize utility, while data subjects may prioritize privacy. 
These challenges have resulted in a complicated policy‐making process for existing deploy‐
ments of differential privacy [93]. Finally, emerging combinations of differential privacy 
with other privacy‐enhancing technologies (as described in Sec. 4.2.3) will significantly ex‐
pand the application space for differential privacy, and may introduce additional complex‐
ity. Sharing the lessons learned from an increasing number of use cases and deployments 
of differential privacy will provide greater insights on how to address these challenges as 
well as the others described in this publication, and pave the way towards standardization. 
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Appendix A. Glossary 

trust model A collection of assumptions that characterize the trustworthiness of each 
component in a system. 

absolute error The absolute difference between the noisy and unaltered versions of a 
query’s output. 

access control policies Policies that describe who is allowed to access the data and/or 
which parts of the data. 

accuracy The degree to which the noisy and unaltered versions of a query’s output differ. 

average query A query that determines the mean of some set of values. Adapted from [22]. 

bounded differential privacy A unit of privacy variant that calls two datasets D1 and D2 

neighbors if it is possible to construct D2 from D1 by changing one person’s data. Un‐
der bounded differential privacy, neighboring datasets have the same size. Bounded 
differential privacy allows for mechanisms that release the total size of the dataset 
with no noise. 

clamping See clipping. 

clipping The general name for any algorithm that enforces a bound on the impact of one 
user’s data on an aggregate statistic. A common example is enforcing lower and 
upper bounds on values being summed in order to bound the global sensitivity of 
the sum. 

clipping parameter The specific choice of lower and upper bounds that are used when 
an algorithm performs clipping. The utility of a differentially private algorithm is 
often dependent on choosing good clipping parameters. One must be careful not 
to compute the clipping parameter directly from the data, as doing so may lead to a 
violation of privacy. 

counting query A query that counts the number of rows in a dataset with a particular 
property. Adapted from [22]. 

data consumer(s) In a trust model for differential privacy, the data consumers are those 
who receive differentially private results. 

data curator In a trust model for differential privacy, the data curator is where the data is 
aggregated. 

data subjects In a trust model for differential privacy, the data subjects are those who the 
data is about. 
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differential privacy A mathematical framework that quantifies privacy risk to individuals 
as a consequence of data collection and subsequent data release. Adapted from [15]. 

differentially private synthetic dataset A synthetic dataset that is produced by mechanisms 
that satisfy differential privacy. Adapted from [22]. 

event‐level privacy A unit of privacy that defines neighboring databases as those that 
differ in one event, for example, a single transaction, or a single row. Adapted 
from [22]. 

fine‐tuning In machine learning, a training step that starts from a pre‐trained model (some‐
times called a foundation model) and adds task‐ or domain‐specific information. 

gaussian mechanism An algorithmic primitive for differential privacy that adds random 
noise sampled from the Gaussian distribution to the output of a query. Adapted 
from [22]. 

group privacy A property of differential privacy. It says that if a mechanism provides dif‐
ferential privacy for one person, then it also provides a weaker differential privacy 
guarantee for groups of people. The weakness of the guarantee depends on the size 
of the group, and the definition of one person depends on the unit of privacy used. 

high‐dimensional A statistic composed of many numbers—e.g. a histogram with 50,000 
bins, or a vector with 1 million elements. 

human bias A form of bias that results from failures in the heuristics humans use to make 
decisions. Adapted from [40]. 

hyperparameter In a differential privacy mechanism, a setting or parameter that controls 
a portion of the mechanism’s behavior or execution. The best setting may be data‐
dependent, and a method that uses the confidential data as the basis for these pa‐
rameters would not satisfy differential privacy. Examples include the clipping param‐
eter for mechanisms that perform clipping, the number of iterations for iterative 
algorithms, and the learning rate or minibatch size for machine learning algorithms. 

identifying information Information that could be used to identify a specific individual, 
such as name, address, phone number, or identification number. 

laplace mechanism An algorithmic primitive for differential privacy that adds random noise 
sampled from the Laplace distribution to the output of a query. Adapted from [15]. 

linking attack An approach for exposing information specific to individuals in a de‐identified 
dataset by matching up records with a second dataset. 
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low‐dimensional A statistic composed of few numbers—e.g. a single count, or a histogram 
with 5 bins. 

neighboring datasets The definition of neighboring datasets is a parameter to the differ‐
ential privacy framework. In many contexts, two databases are considered neigh‐
bors if they differ in the data of one individual. Adapted from [15]. 

outcome‐specific utility metrics A way of measuring the utility of data for answering a 
specific question or class of questions. 

post‐processing invariance A property of differential privacy. It says that the output of a 
differentially private mechanism remains differentially private, even if further pro‐
cessing is performed on it. 

pre‐training In machine learning, a training step that trains a general‐purpose model (some‐
times called a foundation model) on publicly‐available data. Pre‐training is often 
followed by fine‐tuning to equip the model with task‐specific information. 

privacy budget An upper bound on allowable cumulative privacy loss across all analyses 
that process a single dataset. 

privacy loss A quantitative upper bound on the statistical distance between analysis out‐
comes on neighboring datasets. 

privacy parameter A parameter of a differential privacy definition that partly or wholly 
determines privacy loss. 

privacy‐utility tradeoff The fundamental tension between privacy and accuracy. Adding 
more noise increases privacy but reduces accuracy, and vice‐versa. 

reconstruction attack A privacy attack that uses published statistics to reconstruct individ‐
ual data points from the original private dataset. 

relative error The absolute error divided by the unaltered query output. 

sensitivity A quantity that measures how much the output of a query could change as a 
function of a change to the input. Adapted from [15]. 

statistical bias A form of bias that occurs when the expected value of a released statistic 
does not match the true statistic. 

subsampling An algorithmic strategy where the query output is computed using only a 
fraction of the original data, selected at random. Adapted from [22]. 

summation query A query that sums a derived quantity from each row in a dataset with 
a particular property. Adapted from [22]. 
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synthetic dataset An alternative dataset that differs from the original, but also maintains 
specific properties inherent to the original, such as correlations between attributes. 
Adapted from [22]. 

systemic bias A form of bias that results from rules, processes, or norms that advantage 
certain social groups and disadvantages others. Adapted from [40]. 

trust assumption An assumption that characterizes how one expects a specific party 

to behave when given access to sensitive data. 

trusted party A party that can be expected to keep sensitive data safe and not disclose it 
to others. 

unbounded differential privacy A unit of privacy variant that calls two datasets D1 and
D2 neighbors if it is possible to construct D2 from D1 by adding or removing one
person’s data. Under unbounded differential privacy, neighboring datasets have dif‐
ferent sizes. 

unit of privacy The choice of definition for neighboring datasets. Adapted from [22]. 

unstructured data Data formats that often lack explicit structure that relates data to indi‐
viduals, such as text, pictures, audio, and video. 

untrusted party A party that cannot be expected to keep sensitive data safe or refrain 
from disclosing it to others. 

user‐level privacy A unit of privacy that defines neighboring databases as those that differ 
in one user’s data. Adapted from [22]. 

utility The degree to which a dataset or statistic is useful for a specific purpose. 
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Appendix B. Technical Details 

Appendix B.1. Definition of (ε,δ )-Differential Privacy 

Formally, (ε,δ )‐differential privacy is a simple change to the original definition that adds 
an additive δ parameter to the original inequality. The formal definition appears in Defini‐
tion 3. Setting δ = 0 makes the (ε, δ ) definition equivalent to the original pure ε definition 
(i.e., making catastrophic failure impossible). 
Definition: Approximate Differential Privacy. A randomized mechanism M satisfies 
(ε,δ )‐differential privacy if for all neighboring datasets D1 and D2 and all possible 
outcomes S: 

Pr[M (D1)  S]  eε Pr[M (D2)  S]+ δ ∈ ≤ ∈

D1 and D2 are considered neighbors if they differ in the data of one individual. 

The other variants in Table 1 use slightly different ways of measuring the distance be‐
tween the probability distributions M (D1) and M (D2). Rényi differential privacy and 
zero‐concentrated differential privacy bound this distance using Rényi divergence, while 
Gaussian differential privacy does so using f ‐divergences. 

Appendix B.2. Definitions of Sensitivity and Basic Mechanisms 

The formal definition of L1 sensitivity is: 

Definition: L1 Sensitivity. For a function f : D → Rk, the L1 sensitivity ∆1 of f is: 

∆1 = max ∥ f (D1) − f (D2)∥1
neighboring D1,D2 

where D1 and D2 are neighboring datasets according to the unit of privacy. 

This definition works for any function (or query) that outputs a vector of real numbers 
(including a single real number, like most aggregation functions). It defines sensitivity to 
be the maximum L1 distance between the function’s outputs for two inputs that differ by 
one unit of privacy (discussed in Sec. 2.4). The corresponding definition for L2 distance is 
called L2 sensitivity: 
Definition: L2 Sensitivity. For a function f : D → Rk, the L2 sensitivity ∆2 of f is: 

∆2 = max ∥ f (D1) − f (D2)∥2
neighboring D1,D2 

where D1 and D2 are neighboring datasets according to the unit of privacy. 

Both definitions measure the impact of “one unit of privacy change” on the output of the 
function to determine how much noise needs to be added for privacy. For the user‐level 
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unit of privacy, sensitivity corresponds to the impact of one person’s data on the function’s 
output, which corresponds with the intuition for differential privacy given earlier. 
Mechanism: Laplace mechanism [22]. For a query with L1 sensitivity ∆1, the Laplace 
mechanism adds noise sampled from the Laplace distribution with center 0 and scale 
∆1 
ε . 

Guarantee: (ε, 0)‐differential privacy 

Mechanism: Gaussian mechanism [94]. For a query with L2 sensitivity ∆2, ε ≥ 0, and 
0 ≤ δ ≤ 1, the Gaussian mechanism adds noise sampled from the Gaussian (Normal) 
distribution with center 0 and variance σ2 . The mechanism satisfies (ε,δ )‐differential 
privacy if: ( ∆ ) ( )εσ ∆ εσ 

Φ − − eεΦ − − ≤ δ
2σ ∆ 2σ ∆ 

where Φ is the CDF of the Gaussian distribution. 

Guarantee: (ε, δ )‐differential privacy 

The difference between Laplace and Gaussian noise comes from the type of sensitivity used 
for each mechanism: L1 sensitivity ∆1 for Laplace and L2 sensitivity ∆2 for Gaussian. For 
large vectors of results, ∆2 ≪ ∆1. For a single count, ∆2 = ∆1 = 1. The Gaussian mechanism 
offers much better accuracy in the former setting, while the Laplace mechanism offers 
better accuracy in the latter. When many counts are requested at the same time, ∆2 ≪ ∆1, 
and the Gaussian mechanism should be used. 

Appendix B.3. Details: Counting Queries 

The Laplace mechanism can be used to ensure differential privacy for counting queries if 
the L1 sensitivity ∆1 of the query is determined. For simple scalar‐valued counting queries, 
the sensitivity is always 1 (assuming the unbounded neighbors model). The final count 
can only change by 1 when a single individual’s data are added or removed. This argu‐
ment holds no matter what the property is or the columns being grouped. Note that the 
argument only applies when no transformation in the unity of privacy is desired. When a 
transformation in the unit of privacy is needed (e.g., bounding user contributions), then 
the sensitivity of counting queries goes up. 

Key Takeaway: Counting queries and histograms have a sensitivity of 1 when no trans‐
formation in the unit of privacy is desired. 

The simple sensitivity analysis for counting queries makes them good targets for differential 
privacy. They are easy to implement and can often give highly accurate results because 
the sensitivity is low. To achieve differential privacy for counting queries, including the 
examples in this section, under unbounded differential privacy when each user contributes 
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one row to the dataset, the Laplace mechanism with ∆1 = 1 and the desired setting for the 
privacy parameter ε are applied. For histograms, the Laplace mechanism with ∆1 = 1 and 
the same setting for ε can be applied when the bins are specified by the analyst. The noisy 
results satisfy (ε,0)‐differential privacy. 

Appendix B.4. Details: Summation Queries 

To achieve differential privacy for a summation query, the L1 sensitivity ∆1 of a summa‐
tion query is needed. How much a summation query changes when a row is added to a 
database depends on the row. If someone spends $1 on a pumpkin spice latte, then the 
increase in the sum will be $1. If someone spends $10,000, the sum will increase much 
more. 

Achieving differential privacy requires an upper limit on the largest possible increase there 
can be when a row is added or modified. For the latte query, that means an upper limit on 
the price of a pumpkin spice latte. This is a big challenge because no matter what limit is 
set, there may hypothetically be a cafe somewhere that charges more than the limit. 

The solution to this problem is called clipping. The idea is to enforce an upper limit rather 
than assuming one. Lattes that cost more than the limit are clipped so that their price is 
equal to the limit. After clipping, all values in the database are guaranteed to fall between 
the lower and upper limits that were set. The guaranteed lower and upper bounds on the 
data can be used to determine sensitivity. If the data are clipped so that lattes cost at most 
$10, then the largest increase in the output of the summation query will be $10 when a 
single latte sale is added to the database. 

The following process can be used to achieve differential privacy: 

1. Clip each value v in the dataset so that 0 < v < C. 

2. Sum the clipped values. 

3. Apply the Laplace mechanism with ∆1 = C and the desired privacy parameter ε . 

The first step in the process enforces bounded sensitivity, which informs how ∆1 is set in 
the third step. This approach satisfies ε‐differential privacy. 

Appendix B.5. Details: Average Queries 

Unfortunately, bounding the sensitivity of average queries is even more difficult than it is 
for summation queries. In addition to the upper limit on the data values themselves, how 
much an average changes after a row is added depends on how many things are being 
averaged. If one is averaging five numbers, then adding one more number might change 
the average by quite a bit. If one is averaging 5 million numbers, then adding one more 
probably would not change the average very much. As a general rule, however, the sensi‐
tivity of a query should not depend on the data. Otherwise, the sensitivity might itself be 
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Fig. 23. Noisy gradient descent for differentially private machine learning 

Gradient Descent (One Step)

Initial Model 
Parameters

Training Data

new parameters = old parameters - gradient Updated Model 
Parameters

Without Differential Privacy

With Differential Privacy

Noisy Gradient Descent (One Step)

Initial Model 
Parameters

Training Data

new parameters = old parameters - (gradient + noise) Updated Model 
Parameters

sensitive, meaning that it might reveal something about the data. This adds another level 
of complexity to bounding the sensitivity of averages. 

A simple and effective solution for answering an average query using differential privacy is 
to split the query into two separate queries: a summation query and a counting query. To 
split the example query, the two following queries are computed instead: 

1. What has been the total amount spent on pumpkin spice lattes since 2010? 

2. How many pumpkin spice lattes have been purchased since 2010? 

The first is a summation query, and the second is a counting query. The desired average 
can be obtained by dividing the first by the second. By the composition and post‐processing 
properties of differential privacy, if differentially private answers to both queries are com‐
puted, their quotient also satisfies differential privacy. Therefore, the following process 
can be used to compute the average: 

1. Compute the differentially private sum s with privacy parameter ε1. 

2. Compute the differentially private count c with privacy parameter ε2. 

3. Return the average s 
c .

This process satisfies ε1 + ε2‐differential privacy. For a desired privacy parameter ε , 1 = ε
= 1 εε2   is typically set to equally “split” the privacy budget across the two constituent 2

queries. 
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Appendix B.6. Details: Differentially Private Stochastic Gradient Descent 

Figure 23 summarizes the difference between traditional non‐private gradient descent and 
the noisy version that satisfies differential privacy. The non‐private gradient descent algo‐
rithm performs many steps (or iterations) of the gradient update rule. This rule first com‐
putes the gradient of the loss for the current model. The loss quantifies how badly the 
model is performing on the training data, and the gradient’s value directs how to change 
the model parameters to increase the loss. To minimize the loss in order to train a model 
that performs well, the opposite change is made by subtracting the gradient from the cur‐
rent parameters. This process is repeated many times until the model achieves the desired 
performance. To satisfy differential privacy, the noisy gradient descent algorithm selects a 
small minibatch of examples to use in the gradient calculation (which amplifies the privacy 
guarantee), and adds noise to the gradient before updating the model parameters [58]. 
Since the training data are only used to calculate the gradient, adding noise to the gradi‐
ent is sufficient to allow the whole algorithm to satisfy differential privacy. 

Noisy gradient descent adds noise to the gradient. To determine how much noise to add, 
the sensitivity of the gradient computation must be analyzed. In many settings, including 
deep neural networks, the gradient computation is complex and can have extremely high 
global sensitivity. For this reason, the differentially private SGD (DP‐SGD) algorithm [58] 
enforces sensitivity rather than measures it. To enforce an upper bound on sensitivity, the 
algorithm clips the gradient associated with each training example, similar to the summa‐
tion queries discussed earlier. Clipping the per‐example gradients ensures bounded global 
sensitivity for the aggregated gradient used in the gradient update rule and informs how 
much noise is needed. 

The primary alternative to DP‐SGD is a technique that trains many separate models on 
subsets of the training data and aggregates the models themselves with a differentially 
private aggregation function [77]. This approach can provide more accuracy than DP‐SGD 
for the same level of privacy, but it incurs significant computational cost because it requires 
training many models. 

Appendix B.7. Evaluating Software Libraries for Differential Privacy 

Because of the difficulty of implementing differential privacy mechanisms safely and cor‐
rectly, it is good practice to use existing, actively‐maintained software rather than writing 
custom implementations. Below are a few questions that can help prospective users of 
differential privacy evaluate software tools. 

• Does the library adequately address known issues with differential privacy imple‐
mentations? Maintainers of software libraries should be able to confidently explain 
what their approach is to mitigating floating‐point issues, backend issues, and (in the 
untrusted analyst model) timing channels. 

• Does the library allow performing end‐to‐end computation on the data? Using a 
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robust software library for basic mechanisms like noise addition is generally safer 
than implementing this from scratch, but still leaves a lot of room for error. By con‐
trast, software frameworks that encapsulate the entire mechanism and perform au‐
tomatic privacy accounting can prevent unintended privacy leakage. 

• Is the library open‐source? In open‐source software, the privacy claims can be in‐
dependently verified and audited by the differential privacy community, which is a 
positive sign. Conversely, in proprietary software, it is often much more difficult to 
evaluate code quality and the robustness of the implementation. 

• Is the library well‐tested and well‐documented? Test coverage and documentation 
are indicators of software quality, and for privacy‐critical software like differential 
privacy libraries, software quality is an essential component of robustness. 

• Is the library actively used and maintained? An active user base can help to discover 
bugs and privacy vulnerabilities in the software, and an effective maintenance pro‐
cess helps to fix them quickly. 

• Was the library audited by independent third‐parties or proven correct using formal 
methods? In‐depth audits of software projects take time and resources, and third‐
party auditors can help bring independent validation of the robustness of a differen‐
tial privacy library. Formal methods can provide an additional form of oversight, by 
proving that the software correctly implements differential privacy. 
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