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Executive Summary 
With increasing capabilities and widespread deployment, frontier AI models — highly capable foundation 
models on the cutting edge of artificial intelligence technology — may pose intolerable risks due to their 
misuse, malfunction, or systemic factors. For example, frontier models could lower barriers for a terrorist, 
state-affiliated threat actor, or other adversary seeking to cause a high-impact events, such as a chemical, 
biological, radiological, or nuclear (CBRN) attack, or could result in illegal discrimination against large 
numbers of people when adopted for downstream applications without sufficient evaluation. 

Given the potential harms of foundation models, AI developers need to establish limits, or “thresholds,” to 
ensure that AI-based technologies are designed to prevent severe harms, or “intolerable risks,” from 
becoming reality. This paper provides an overview of intolerable risk thresholds for AI, and proposes 
recommendations for organizations and governments exploring how to define and implement these 
thresholds. We define intolerable risks as risks of severe harm to public safety and human rights, 
inequality, economic loss, or an unwelcome alteration of values and societal norms that can 
manifest through purposeful direct adversarial misuse, systems failures, unintended 
consequences arising from a chain of related events, or cascading, secondary, or simultaneous 
failures of frontier models. 

In our discussion, we include model harm arising from the risk categories of CBRN weapons, cyber attacks, 
model autonomy, persuasion and manipulation, deception, toxicity, discrimination and socioeconomic 
disruption. Appendices A and B offer detailed background on the various risk taxonomies and risk actors 
that we considered from current AI governance literature to help define our scope. 

A survey of the various techniques used in AI evaluations, and a review of the initial efforts across industry, 
academia, AI Safety Institutes (AISIs), and regulators to establish thresholds, showed that evaluations of AI 
systems to set capability thresholds, do not necessarily replace estimations of risk, and instead can encode 
risk tolerances in more implicit ways (Campos et al. 2024). Through this paper, we provide a number of key 
principles and considerations to help quantify some of these impacts through a discussion on adapting risk 
assessment frameworks from other industries. We also propose a number of considerations for 
organizations and governments exploring how to define and operationalize intolerable risk thresholds in 
Section 3:  

● Design thresholds with adequate margins of safety to accommodate uncertainties in risk 
estimation and mitigation. 

● Evaluate dual-use capabilities and other capability metrics, capability interactions, and model 
interactions through benchmarks, red team evaluations, and other best practices. 

● Identify “minimal” and “substantial” increases in risk by comparing to appropriate base cases.  
● Quantify the impact and likelihood of risks by identifying the types of harms and modeling the 

severity of their impacts. 
● Supplement risk estimation exercises with qualitative approaches to impact assessment. 
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● Calibrate uncertainties and identify intolerable levels of risk by mapping the likelihood of intolerable 
outcomes to the potential levels of severity. 

● Establish thresholds through multi-stakeholder deliberations and incentivize compliance through 
an affirmative safety approach. 

Based on these principles, Section 4 presents clear threshold recommendations for some intolerable 
outcomes in the identified risk categories. We conclude our discussion with three case studies that detail 
the unique ways in which the key principles (see Section 3) can be applied to further operationalize our 
threshold recommendations (see Section 4) for three distinct types of intolerable risks: misuse risks from 
CBRN capabilities, cross-cutting risks from evaluation deception, and systemic risks from AI-generated 
misinformation.  

This paper was supported by several rounds of stakeholder consultations, including roundtable discussions, 
workshops, and feedback from various experts. We intend for this material to be a starting point or 
supplementary resource for others to use in their own deliberations to begin timely efforts to implement 
policies that prevent intolerable risks from ever occurring (ex ante), rather than merely implementing 
safeguards in response to their occurrence (ex post). Through this work, we hope to advocate for “good, 
not perfect” thresholds and to err on the side of safety in the face of uncertainty and limited available 
data. 
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1. Introduction 

1.1. The Call for Defining Intolerable Risk Thresholds  

In May 2024 at the AI Seoul Summit, 16 global AI technology companies committed to publishing their 
efforts to measure and manage risks posed by their frontier AI models in an accountable and transparent 
manner, and committed to determining thresholds for intolerable risks. Specifically, as part of these 
Frontier AI Safety Commitments, the organizations are required to define "thresholds at which severe 
risks posed by a model or system, unless adequately mitigated, would be deemed intolerable" 
(DSIT 2024a).  

At the same summit in Seoul, 27 nations and the EU announced their intent to define these 
thresholds for frontier AI systems in advance of the AI Action Summit in France, signaling the 
regulatory appetite to challenge self-imposed, “voluntary” limits set by industry actors (DSIT 2024b). Both 
pledges explicitly state the importance of ensuring these thresholds are defined with input from a range of 
trusted actors, and require reporting on the different capacities of their involvement in these efforts. 

While the idea of “intolerable risks” from frontier models might seem futuristic, we are already seeing 
severe impacts from current model deployments — for instance, from AI-generated misinformation that is 
spreading widely across our information ecosystems and undermining social trust. While (arguably) not yet 
at an intolerable level, the growing capabilities and wide-scale deployment of these models should serve as 
a warning to undertake immediate tangible efforts to mitigate such risks. 

In its most substantial articulation of national security strategy and policy toward AI, the Biden 
Administration released the National Security Memorandum (NSM) on artificial intelligence, which was 
issued in October 2024 and called for federal agencies to identify and prohibit “unacceptable levels of risk” 
from AI applications (White House 2024a).1 Accompanying this memo was the Framework to Advance AI 
Governance and Risk Management in National Security, which further detailed a principled guide to 
determine the threshold of unacceptable risk (White House 2024b). Previously, the National Institute of 
Standards and Technology (NIST) released specific guidance to manage intolerable risks arising from the 
misuse of frontier models (NIST 2024a). The National Telecommunications and Information Administration 
(NTIA) has called for the federal government to maintain a portfolio of risk cases and thresholds in the 
context of dual-use, open, foundational models, calling for special attention to intolerable risks to aid 
effective monitoring and management (NTIA 2024). 

Several frameworks for pre-release risk assessment and decision-making include dual-use capability 
evaluation and some form of explicit or implicit thresholds for dual-use capability hazards that should be 
regarded as intolerable (Anthropic 2024, Google DeepMind 2024, OpenAI 2023b). The Organization for 

 
1 The majority of this paper was drafted and finalized prior to the rescission of Executive Order 14110 on January 20, 
2025. 
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Economic Cooperation and Development (OECD) and the Safe AI Forum (SAIF) among others have also 
launched working groups and requested public inputs to determine early warnings and risk thresholds to 
safeguard frontier AI systems (OECD 2024, IDAIS 2024). One such consultation report (TFS 2024) from the 
Future Society and its partners, released in January 2025, reiterates the need for stakeholders at the 
upcoming AI Action Summit in Paris to supplement the voluntary commitments from industry with 
concrete thresholds. This report calls on the Summit’s participants and the network of AI Safety 
Institutes to provide a timely solution and present a concrete roadmap for model developers 
and evaluators to operationalize clear thresholds to mitigate intolerable AI risks.  

1.2. Purpose and Scope 

In this paper, we provide a background on intolerable risk thresholds and propose a number of 
recommendations and considerations for developers, third-party organizations, and governments, that are 
exploring how to define and operationalize intolerable risk thresholds. We intend for this material to be a 
starting point or supplementary resource for others to use in their own deliberations.  

In Section 2, we aim to provide a definition for intolerable risks through a discussion of different policy 
approaches, risk taxonomies, and AI safety frameworks. We do not recommend an exhaustive risk 
taxonomy,2 standardized severity scales, or definitive likelihood estimations. Instead we collate past 
precedent and current practices on these measures, and provide our recommendations to effectively 
combine these approaches through the coordination of multiple cross-disciplinary stakeholders. While 
trends in AI development, risk mitigation, and management techniques3 were explored during the drafting 
of this paper, these topics are not directly addressed in this paper. 

We offer specific guidance and recommendations on setting quantitative and qualitative thresholds (see 
Section 3), but we do not explicitly draw red lines for intolerable outcomes. Our work provides a 
recommended template for policymakers, model developers, and model providers to utilize when 
operationalizing risk thresholds. However, our primary focus is on how risk thresholds can be 
operationalized by upstream AI developers or codified by regulators (rather than downstream AI 
“systems”).4 In Section 5, we provide case studies to further illustrate the operationalization of the 
recommendations from Section 3. 

1.3. Evolution of this paper  
Following an in-person roundtable discussion held on November 12, 2024 at the University of California, 
Berkeley campus, a first draft of this paper was published in November 2024 to invite stakeholder feedback 

 
2 See Appendix A for a discussion on why this needs to be a subjective approach 
3 For more on AI risk mitigation and management, see Barrett et al. (2025). 
4 Our focus on AI models, rather than AI systems, is intended to reflect current trends in AI development and 
governance, in which a single large GPAI/foundation model typically plays a central role as a core part of either a GPAIS 
or a relatively narrow-purpose end use application. Our focus includes but is not limited to general purpose AI (GPAI), 
Generative AI (GAI), and agentic AI. 
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(Barrett et al. 2024a). Following this release, a virtual workshop was held on December 16, 2024 to draw 
feedback, which greatly influenced the revision of this paper, along with feedback sent to us via email.  

The working paper released in November 2024 defined capability-based categories for intolerable malicious 
use risks, but did not include other unacceptable uses, impacts, and limitations under the “intolerable” 
umbrella. However, as has become evident from recent policy developments (e.g., the second draft of the 
General-Purpose AI Code of Practice, EC 20245), and echoed by our workshops, the highest probability of 
insidious risks from AI deployments will likely be the cumulative effect of “high-impact” AI systems that 
operate in critical domains. As these systems are increasingly adopted for applications in such domains, 
they could lead to long-term effects such as unmitigated workplace automation or large scale algorithmic 
discrimination causing widespread economic losses that exacerbate existing inequalities and power 
imbalances, etc. Managing these risks will require commitments from all actors in the AI ecosystem, keen 
monitoring and oversight, and resistance to an inherently tech-first approach to designing access to critical 
infrastructure and services.  

The main changes between the working paper from November 2024, and this version include the extension 
of intolerable risks beyond capability-based risks, updated considerations to help broaden the focus of 
intolerable risk thresholds beyond capability evaluations, and the addition of illustrative case studies to 
demonstrate the operational feasibility of our recommendations.   

 
5 The second draft of the EU General-Purpose AI Code of Practice was published on December 19, 2024. The final 
version is planned for publication in May 2025. (See, EC 2025 for more in the EU Code of Practice timeline.)  
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2. Background Analysis on Intolerable Risks and 
Thresholds 

As recounted in the introduction, the Frontier AI Safety Commitments seek to define "thresholds at which 
severe risks posed by a model or system, unless adequately mitigated, would be deemed intolerable" (DSIT 
2024a). 

Expanding on Advanced Capabilities-Based Risks 

Current industry frameworks on intolerable risks from frontier models often highlight risks that arise from 
catastrophic events (e.g., deployment of bioweapons) arising from model capabilities and their misuse. 
Across these frameworks, there is relative consensus on the key risk categories in scope. The frameworks 
from Google, OpenAI, and Anthropic discuss model capabilities, such as ability to develop CBRN weapons, 
conduct cyber attacks, and autonomous capabilities, with a subset of frameworks additionally considering 
models’ capacity for persuasion and to some extent, deception as other risk categories to potentially track 
(Anthropic 2024, Google DeepMind 2024, OpenAI 2023b). 

By continuing to narrow our focus to these risks from misuse of these advanced (at times futuristic) 
capabilities, we risk over-indexing on specialized thresholds at the expense of tackling current AI hazards 
(Khlaaf et al. 2024). This narrow scope sidelines emerging risks from current model capabilities and 
limitations (Raji et al. 2022), especially in combination with smaller, domain specialized AI tools that may 
pose significant harms. The capability-based categorization also leaves out other systemic risks (EP 2024) 
like the long-term impacts of frontier models (e.g., deterioration of democratic norms, large-scale 
discrimination) that could fundamentally change the fabric of society, sidelining industry’s accountability 
for such outcomes (Critch & Russell 2023). This paper is a reflection of the evolving considerations for the 
different categories of intolerable risks to be considered (as demonstrated by the changes in our research 
scope, traced in Section 1.3). 

Without a common definition, scale, or policy to decisively determine the gamut of “intolerable risks,” we 
begin with an incomplete premise on which to base our threshold-setting exercise. Therefore, by reflecting 
on the various risk taxonomies, motivations of risk actors, and objects at risk, we define the scope of 
intolerable risks as emanating not only from singular events with potentially catastrophic impacts that could 
threaten national security, but also from large-scale societal risks resulting from the emergent behaviors, 
vulnerabilities, and capabilities of AI models. 

Defining Intolerable Risks  

Based on our literature review and scoping exercise, we define “intolerable AI risks” as risks of 
severe harm to public safety, human rights, inequality, economic loss, or an unwelcome 
alteration of values and societal norms that can manifest through purposeful adversarial 
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misuse, systems failures, unintended consequences arising from a chain of related events, or 
cascading, secondary, or simultaneous failures of frontier models. 

2.1. Risks in Scope 

Previous work on risk taxonomies that aims to classify potential harms primarily analyzes the scale of AI 
adoption or the societal impact of AI models along the lines of bias, misinformation, automation, 
socioeconomic and environmental harms, etc. (Shelby et al. 2023; Vidgen et al. 2024; Weidinger et al. 2022). 
In measuring these risks, there is growing consensus on not only identifying the capabilities of frontier 
models but also designing how such models are evaluated in the context of their interaction with society 
(Solaiman et al. 2024). Additional categorizations of risk that inform our framing of intolerable risks 
include– capabilities exploitable by malicious actors, risks stemming from product or model malfunction, 
systemic risks, and other cross-cutting risk factors (Autio et al. 2024, Bengio et al. 2024, 2025). 

To limit the scope of our study on intolerable risks, we chose the following (non-exhaustive) set of risks 
(from model misuse, malfunction, and their compounding effects) in line with our definition of intolerable 
risks.6 These categories also feature in most policies from AI developers and government actors as priority 
areas for monitoring and risk mitigation. These risks are not mutually exclusive: a bad actor could use a 
model with a high degree of autonomy to aid in a cyber attack, for example. We outline further rationale for 
these risks’ inclusion, and the potential intolerable outcomes they pose, in Section 4, Table 1. 

Selected Risk Categories:  

● Chemical, Biological, Radiological, and Nuclear (CBRN) Weapons 
● Cyber Attacks 
● Model Autonomy (loss of human oversight) 
● Persuasion and Manipulation 
● Deception 
● Toxicity (including CSAM, NCII)  
● Discrimination  
● Socioeconomic Disruption 

Other crucial ways to identify risks beyond those explored in existing literature is through extensive open-
ended red reaming activities, as well as other risk estimation techniques (Campos et al. 2024), which are 
discussed in Section 2.3.  

 
6 While this paper does not currently include the environmental risks from AI in its scope, it cannot be dismissed that 
rapidly improving machine learning capabilities, while beneficial for many applications, may also increase the risk of 
short-term economic incentives sidelining long-term sustainability goals. Tracking energy, water usage, compute, 
runtime, and carbon emissions or holistic life cycle assessment (Berthelot 2024) can help determine environmental 
impacts of AI. Designation of such risks as ‘intolerable’ should be supplemented by evaluating the common argument 
of risk-benefit trade offs. 
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2.2. Intolerable Risk Thresholds 

The Frontier AI Safety Commitments (DSIT 2024a) characterize intolerable risk thresholds as follows: 

“Thresholds can be defined using model capabilities, estimates of risk, implemented safeguards, 
deployment contexts and/or other relevant risk factors. It should be possible to assess whether 
thresholds have been breached.”  

The second draft EU AI Code of Practice, similarly advocates for the articulation of “...conditions under 
which further development and deployment of a general-purpose AI model with systemic risk will not 
proceed due to insufficient mitigations for (a) keeping risk below an unacceptable level, or (b) 
appropriately mitigating risk that is below an unacceptable level” (EC 2024, p52). 

Commonly recommended mechanisms to assess and manage intolerable risks include capability 
thresholds, compute thresholds, and risk thresholds. These are discussed further in Appendix B.  

While many factors contribute to a model’s risks and capabilities, compute (i.e., the computational 
resources required for an AI model) has emerged as the common initial metric to identify models that 
require further regulatory oversight and evaluation. Both the former White House Executive Order 141107 
(White House 2023) and the EU AI Act (EP 2024) have made use of compute thresholds to categorize high-
risk models. 

Koessler et al. (2024) have argued for defining thresholds primarily in terms of “risk” (i.e., likelihood and 
impact). The literature on risk management for rare or novel catastrophic events shows how risk 
estimations for such events introduce debatable assumptions or must factor in great uncertainties. In the 
absence of regulatory guidance, such estimates may not help draw a clear threshold "line" but rather 
suggest a very broad plausible range.  

Model capability often serves as an (imperfect) proxy for risk. With no standardized methods to measure 
compute power, the dual-use nature of foundation models, the current narrow focus on misuse risks, and 
the lack of reliable risk estimates, current industry frameworks prominently feature capability thresholds 
that are most closely aligned with establishing thresholds for intolerable risk. These metrics do not carry 
the compounding uncertainties of likelihood estimates, but still take impact into account. Appendix A 
details the various risk levels that model developers and deployers have identified to track organizational 
capability thresholds. 
 
Evaluating the current approaches against the mandate of the Frontier Safety Commitments makes it 
evident that all three types of thresholds differ widely in the reliability of their estimation of risk, as well as 
the feasibility of their operationalization. It is also evident that, despite the current focus on capability 
thresholds in frontier frameworks, these evaluations do not necessarily replace estimations of risk, and 

 
7 The majority of this paper was drafted and finalized prior to the rescission of Executive Order 14110 on January 20, 
2025. 
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instead encode risk tolerances in more implicit ways (Campos et al. 2024). In the absence of the perfect 
method, we recommend that multiple evaluation criteria be considered in tandem when singular 
measures are hard to quantify, in order to reliably establish thresholds to prevent intolerable risks. 

Given the devastating potential of intolerable AI risks, it is imperative to implement policies to prevent 
the harms from ever occurring (ex ante) rather than merely implementing safeguards in response to 
their occurrence (ex post). When developing risk thresholds in this context, empirical research is a highly 
scarce resource, and it is important to strive for “good, not perfect” thresholds and to err on the side 
of safety in the face of uncertainty and limited available data.  

Based on this motivation, this paper recommends establishing intolerable risk thresholds that reflect the 
complex impacts that emerge from model capabilities, deployment contexts, and the likelihood of different 
outcomes (for more on this, refer to Clymer et al. 2024, Section 6.6). Thresholds must also be designed to 
account for diverse impacts, such as loss of human lives, decline in quality of life, threats to human rights, 
damage to property and infrastructure, financial losses, environmental impacts, etc.. They should also 
appropriately address the potential for compounding harms from small-scale or less severe risks, in 
addition to mitigating risks from singular catastrophic events.  

While risk thresholds are not commonly operationalized for AI risks, we hope to provide some guidance 
and recommendations through this paper to help accelerate their adoption for AI governance.  

2.3. Risk Estimation 

There are a variety of negative outcomes that could come about from the risks listed above (Section 2.1). 
The outcomes we are most concerned with preventing are systemic, widespread, or have far-reaching 
consequences with large-scale societal impact. In simple terms, risk can be defined in terms of 
likelihood (probability of an event or negative outcome), and severity of harm (magnitude of 
impact). 

Discussion on AI Risk Estimation 

A quantitative measurement of risk can be extremely valuable, but may not always be feasible, especially for 
low-probability, high-impact events that are harder to estimate. Despite the difficulty in reliably estimating 
risks, or precisely because of its challenging nature, we believe that it is doubly important that risk 
estimations of singular events that could cause catastrophic impacts remain a responsibility of the frontier 
model developers, and not downstream deployers. 

Since intolerable risks go beyond singular catastrophic events and also need to account for the long-term 
compounding nature of societal-scale risks, there is a need for researchers and civil society to 
evaluate the severity of systemic risks, for government regulators to explicitly establish 
acceptable harm severity levels for society, and for developers to ensure that models do not 
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cross these levels in order to enforce better governance of model development. This is not to say that 
catastrophic risks from singular incidents do not need state intervention; operationalization of all threshold 
risks can only be reasonably and reliably achieved through the collaboration of state and industry efforts.  

Koessler et al. (2024) identify the different risk measurement approaches from industry frameworks– risk 
models, threat models, and risk scenarios (Anthropic 2024, OpenAI 2023b, Google DeepMind 2024) — to 
demonstrate the pathways between risk factors and harmful impacts. We similarly recommend the use of 
risk scenarios for establishing intolerable outcomes, to help create a robust understanding of model 
capabilities, the likelihood of such risks occurring from model use and deployment, and their impacts 
should they manifest. Harms can be categorized based on who or what is impacted, and severity levels 
assigned can be based on the magnitude of impact. We present additional recommendations from 
emerging risk estimation frameworks and other industries in the rest of this section.  

Comprehensive risk models containing all possible risk scenarios are extremely difficult to develop, and it is 
recommended to start with a limited and defined number of risk scenarios (Koessler et al. 2024). To the 
greatest extent possible, regulators and government actors — in partnership with academia, civil society, 
industry, and impacted communities — should create an exhaustive list of risks and their connection to 
negative outcomes, then prioritize both risks and outcomes using a combination of likelihood and impact. 

Regardless of the risk measurement method, it is important that risk thresholds are operationalized 
and specific enough to ensure that multiple evaluators with access to the same resources would 
agree on the risk threshold determination of an evaluated model (DSIT 2023a). 

Despite the rich literature that tracks the identification, assessment, and management of AI-related risks, 
there is no clear consensus on a favorable methodology to assess the likelihoods of different intolerable 
outcomes, or the resulting severity of their harms. Estimating the likelihood of risks is especially important 
given the increase in systemic risks with not just model capabilities but also model reach (EP 2024, Recital 
110).8 Therefore, we strongly recommend that determining thresholds require the involvement of a diverse 
set of stakeholders with expertise in areas that extend beyond frontier AI, or even the risk area itself, such 
as national security, environmental science, human rights, etc. Apart from multi-stakeholder participation, 
looking to other high-risk industries that have more mature risk management strategies could also provide 
important lessons for AI risk estimation. 

Precedents from Other Industries 

We have a wealth of examples of risk assessment strategies from fields such as aviation, healthcare, nuclear 
energy, and chemical manufacturing that detail frameworks to map and safely monitor the impacts and 
probabilities of industry-specific risks (Tudoran 2018, Dezfuli et al. 2014). The FDA, for instance, 
extrapolates the likelihood of device malfunction, likelihood of harm to patient, and the total number of 
patients exposed to inform evaluations of safety compliance from medical device manufacturers during 

 
8 And in the absence of consensus on likelihood estimations, introducing subjective probabilities could help 
adequately capture the uncertainty inherent to such risk modeling. (Flage et al. 2014). 



 
 

14 

clinical trials (FDA 2016). Precedents from other industries show unique ways of identifying risk categories 
and calculating acceptable thresholds, and there is no one-size-fits-all approach. While methods to 
characterize different harms and calibrate the appropriate scales of impact are common to most risk 
assessment methodologies, the approaches used are diverse. Some risks are tightly coupled with harms 
(e.g., a chemical spill causing negative health outcomes), while AI risks could be tightly connected to 
capabilities or knowledge domains. However, other sectors have grappled with accounting for nuance in 
the chain of harm. For instance, to prevent misuse, the FAA prioritizes identifying hazards around access 
control, personnel screening, and protection against unauthorized activities. 

Adapted to AI Risk Estimation 

The literature on catastrophic AI risks surfaces several approaches that adapt industry precedents and 
modeling paradigms to assess risks from AI. For instance, fault tree analysis and event tree analysis are 
commonly used to determine catastrophic AI risks (Barrett & Baum, 2017a, 2017b). For a detailed review of 
industry precedents adapted to assess AI-specific risks, see Koessler and Schuett (2023). Recent work on AI 
risk has expanded to encompass a wider variety of risks, some of which are illustrated below.  

● One approach derives harm severity levels by classifying observed AI incidents into risk types, 
then using the CSET AI Harm Framework to categorize tangible and intangible harms (Hoffman and 
Frase 2023). This framework generally uses a logarithmic scale to emphasize the rapidly escalating 
nature of potential damage that could be caused by AI models. This type of framework could be 
useful in setting uniform standards for intolerable outcomes across multiple risk domains. 
 

● Another approach to consider is the Probabilistic Risk Assessment (PRA) framework, a risk 
matrix that is commonly used across industries, for instance, its application to the healthcare 
industry can be seen in Pascarella et al. (2021). By adapting this popular technique to assess AI risks, 
the PRA workbook for AI risks designed by the Center for AI Risk Management & Alignment helps 
surface potential future threats, or “known and unknown unknowns,” which are important 
considerations when modeling emerging AI risks. This approach examines risks linked to AI aspect 
groups, such as capabilities, knowledge domains, and sociotechnical impact domains. This analysis 
examines both direct and indirect risks to individuals, society, and the biosphere. Walking through 
the methodology provides assessors with a report card detailing risk areas and levels. The PRA 
models AI harms based on potential to rapidly escalate and cascade (Wisakanto et al. 2025). 

These approaches seem promising but have not yet been widely or uniformly applied in estimating AI risks. 
Nonetheless, we suspect that frameworks like harm severity scales and probabilistic risk assessments will be 
widely adopted tools that can help calibrate the uncertainties inherent to risk estimation through 
standardized scales. That said, we are not yet confident in recommending any singular framework as a 
standalone assessment that regulators and developers should rely on. We instead distill such efforts and 
use illustrative steps in the following section to operationalize risk thresholds.  
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3. Key Principles and Considerations 
Determining risk thresholds for dual-use foundational models is an exercise in balancing overarching 
thresholds with wide applicability and domain-specific thresholds with high specificity. This specificity may 
reflect the range of actors, norms, practices, and technical systems involved, and the specific ways in which 
risks may emerge in that domain (Shelby et al. 2023). As illustrated in the section above, these efforts 
require the involvement of governments and innovators to develop and operationalize thresholds that 
reflect a range of aspects across the lifecycle of frontier model development, as well as model deployment 
(NTIA 2024).  

Additionally, we see different risk categories applying the key considerations illustrated in this section in 
unique combinations to determine thresholds and corresponding actions, as illustrated through the case 
studies in Section 5. For instance, if strong correlating metrics or uplift studies can be designed for 
capability-based risks like CBRN weapons, strict capability thresholds could be established to stall model 
development or deployment. On the other hand, negative outcomes from model limitations, or 
compounding risks from their deployment context (for example, misinformation risks), may require 
evaluating risk estimates and model propensities in tandem. This approach may lead to efforts to curtail 
deployments in certain application areas, or mandate that mitigation or alignment efforts accompany any 
substantial increases, rather than an altogether halting of development.  

This paper builds on frontier model safety frameworks and prominent policy language in identifying some 
intolerable risks in scope (Section 2.1). But as we note, this is not an exhaustive list, and policy frameworks 
should amalgamate different risks and apply their societal and cultural perspectives toward defining 
intolerable risk categories. (For further discussion on these subjective estimations of risk, see Appendix A.) 
There are a range of taxonomies that can be mapped to appropriate frameworks for interoperability, and 
they must be standardized where feasible to enable easier adoption in the risk assessment and reporting 
exercise. This is an area where government agencies, policies, and international agreements can lend their 
efforts to operationalize better oversight. 

The recommendations in Section 3.1 are intended for numerous actors in the AI development and 
deployment lifecycle, including but not limited to, academic institutions, industry, and government actors. 
Section 3.2, Codifying Thresholds into Regulations, is mainly intended for government actors. 
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3.1. Foundations for Establishing and Operationalizing 
Thresholds 

Overarching Guidance 

● Account for Uncertainty:  

○ Standardized scales, such as the harm severity levels or PRA framework discussed in 
Section 2.3, can serve as critical approaches to calibrate uncertainty across the various 
types of harms caused by AI risks. Additionally, depending on the statistical approach and 
risk assessment design, AI developers may aim to evaluate whether 1) the mean value of 
uplift is less than the threshold, or 2) the upper end of the confidence interval for the value 
of uplift is less than the threshold.9  

○ Purpose Limitation: When uncertainty in risk estimation can interfere with decision-
making for model deployment in high-impact application areas, like healthcare or financial 
lending, cautionary governance must be practiced. Similar to the prohibited AI practices 
from the EU AI Act (EP 2024, Article 5), or prohibited AI use cases for government 
agencies from the U.S. White House Framework to Advance AI Governance and Risk 
Management in National Security (White House 2024b), regulators can disallow the 
deployment of AI models in certain use cases where risk estimations are accompanied by 
high levels of uncertainty, before critical risk levels are reached. This can be operationalized 
especially effectively when taking a sector-specific approach in establishing critical and 
intolerable levels10 of risk.  

● Leave some Margin of Safety  
Because of the uncertainties of estimating risk, limitations in eliciting capabilities, and the growing 
category and scale of AI risks, it is important that thresholds be set at highly conservative levels, but 
designed with adequate flexibility so that they can evolve in the light of rigorous assessments and 
robust mitigation. 

○ To account for open source models: Design thresholds that take into consideration the 
unreliability of virtually all safeguards and risk mitigation efforts at this time. Anthropic 
defines redline CBRN capabilities in terms of reaching human level expertise. However, it is 

 
9 A confidence interval overlapping with the intolerable risk threshold should trigger the need for more work with a 
larger sample size to reduce the uncertainty range and give a better assessment of whether the effect is actually below 
the intolerable risk threshold. 
10 We define critical levels of risk as determined by any “substantial” increases in capability or risk. This critical level of 
risk is distinctively lower than an intolerable level of risk. For example, models with even the lowest level of risk for 
privacy breaches can be unsuitable in processing sensitive health or voter information, but may be suitable for other 
sectors. See Section 5b, “Determining Which Artificial Intelligence Is Presumed to Be Safety-Impacting or Rights 
Impacting,” in OMB (2024). 
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necessary to leave a margin of safety, especially for models intended for open weights 
release.11 it is worth aiming to stay well below human expert level thresholds (e.g., setting a 
threshold at halfway to human expert levels). More generally, it seems prudent to 
operationalize intolerable-risk thresholds at approximately the “substantial” level, leaving 
some margin of safety before arriving at a “severe” level. 

○ To account for limitations in mitigations: Some intolerable risk thresholds should not 
factor in model guardrails or other model-capability mitigation measures. Virtually all 
guardrails for capability are inadequate or unreliable and can be trivially circumvented via 
jailbreaks (El-Mhamdi et al. 2022, Wu et al. 2024) or reversed via fine tuning(e.g., (Carlini et 
al. 2023), at least at this point in time (Zou, Wang et al. 2023).  

○ Future-Proofing Thresholds: Intolerable risks do not necessarily require large-scale 
runs. Therefore, due consideration needs to be placed on how thresholds might 
have to change rapidly with the widespread availability and affordability of compute 
power for fine-tuning open models (Seger et al. 2023). Entrench these margins of safety in 
threshold determination along the dimensions of increasing affordability, access, and 
expertise in AI models to ensure sufficient safety between calibrations. 

● Transparent Reporting 

○ Documented risks and decisions should also be reported transparently — to regulators or 
internal review boards, red teamers, and auditors — to ensure appropriate testing against 
vulnerabilities in the chosen design of the model. Additionally, limitations and uncertainty 
should also be documented and reported for all safety evaluations. 

Capability Evaluations 

● Capability Evaluation Methods  

At least two methods are available to evaluate model capability: open benchmarks and closed red 
teams. Benchmarks utilize a standardized set of questions and answers through model prompts 
to evaluate model capability, making them a quick and cost-effective option.12 Red team 
evaluations involve intensive and interactive testing by domain experts, and achieve a higher level 
of accuracy by incorporating sensitive details. The in-depth and labor-intensive nature of red-team 
evaluations render them higher in cost. Barrett et al. (2024b) recommend utilizing open 

 
11 Models with an open weight release tend to be easiest to fine-tune or enhance in other ways (e.g., reinforcement 
learning and chain of thought to add capabilities), but they cannot be monitored or decommissioned by the model 
developer through an API.  
12 An example of a CBRN and cyber-related benchmark is WMDP (Li et al. 2024a,b,c). Other capability benchmarks 
include PlanBench (Valmeekam 2022a,b), WorldSense (Benchekroun et al. 2023a,b), and MMLU (Hendrycks et al. 
2020). While quick and cost-effective, benchmarks lack accuracy. For other socio technical safety evaluations, see this 
repository. 
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benchmarks as a quick, cost-effective preliminary evaluation of model capabilities, and running in-
depth red team evaluations if a model receives a benchmark score indicative of high dual-use 
potential. 

● Compare to Appropriate Base Cases  

Human-uplift studies can be helpful in calculating capability-enabled risks by comparing AI-
augmented risk scenarios to the baseline performance and likelihood associated with such 
intolerable outcomes sans AI assistance. Such studies enable quantitative risk assessments by 
mapping potential technological enhancements against current performance thresholds, which 
allows precise calculation of scenarios where capability gains might introduce intolerable risks. This 
can be used to further inform model capability assessments and the establishment of capability-
based thresholds. Typically with human-uplift studies that evaluate CBRN and cyber risks, dual-use 
capability assessment methods either implicitly or explicitly compare a model’s outputs to 
information available from internet searches. (See more in the CBRN weapons case study in 
Section 5 below, or Mouton et al. 2024, Patwardhan et al. 2024, or Dubey et al. 2024). 

○ For assessing marginal risks of releasing a particular model, it could be valuable to compare 
a new LLM to other available LLMs, instead of to the Web. However, a model’s outputs 
should not only be compared to other available models. Closed-weights models can be 
rolled back, they can be made unavailable very quickly via the provider’s control of an API, 
but open-weights models cannot effectively be made unavailable after release of their 
weights. With growing investment in AI globally and an increasing number of models 
released each year, using existing models as a baseline could easily lead to an exponential 
growth in risk from AI models overall. In particular, open-weights model releases, cannot 
be contingent upon comparisons between the rising marginal-risk of their current and 
previous open-weights release. That would be a slippery slope, and bad risk management 
policy. 

● Identify Substantial Increases in Risk  

At a minimum, aim to identify cases of substantial increase to marginal risk. The concept of 
marginal risk13 can be a useful way to compare the risks of a model compared to standard tools, 
such as searches on the internet. We can assume several terms as approximately equivalent to 
“substantial,” but without getting into a legal analysis of such terms, we define “substantial” here to 
mean something greater than detectable. 

 
13 The concept of marginal risk can also contribute to a slippery slope, as progressively worse and more dangerous 
models are considered acceptable. It is not appropriate to compare the risks of a new frontier model to the risks of 
every other available model because there are already widely proliferated models without sufficient safeguards that 
can be used to cause significant harm. (This is also recounted in the subsection on “Compare to Appropriate Base 
Cases,” above). 
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● Capability Metrics to Evaluate Impact  

Several aspects of model capabilities must be evaluated in the context of their deployment 
to arrive at a measure of intolerance. This approach examines risks linked to AI aspect groups, such 
as capabilities, knowledge domains, affordances, and sociotechnical impact domains. For example, 
segmenting evaluations into specific capabilities, such as planning, knowledge, and execution, or 
more granular variables, such as those from the full list of risk aspects and their relation to harms, 
as detailed in the PRA workbook “Risk Detail Table” (Wisakanto et al. 2025).  

● Accounting for Capability and Model Interactions  

In many real-world systems, AI models do not operate in isolation and may interact with other 
models or systems with different capabilities.14 Evaluation of model interactions is necessary for 
identifying current and emerging behaviors that could present harm. Relying on individual model 
evaluations may lead to disproportionately low measures compared to the risks posed. Mangal et 
al. (2024) report that a coalition of open-source pretrained models outperforms single fine-tuned 
models in various tasks. The importance of model interaction evaluations will continue to rise as we 
move toward agentic15 models with access to external systems, and that are capable of performing 
end-to-end tasks without human intervention.  

● Minimal Increases to Risk Should be Detectable, but not Necessarily Intolerable  

○ AI developers and evaluators should not be disincentivized for good-faith measurement 
efforts that detect small levels of increase in model capabilities. Indeed, there is substantial 
value in constructing evaluation processes that are sensitive enough to detect small levels 
of capability uplifts. Thus, intolerable risk thresholds should not be so low as to imply that 
intolerable risks include “anything detectable by any means available,” or “anything 
statistically significant.” It is possible to have statistically significant effects that have a small 
magnitude of effect.16 

○ Small capability lifts should not be merely ignored; instead, they should be used as 
potential indicators of other hazardous capabilities, and as triggers for additional efforts to 
detect risk more broadly or in more depth. Detectable levels of capability increases should 
also be accompanied by adequate investment in alignment and mitigation before they 

 
14 For example, cascading model systems combine models so that the output of one model is the input of another 
model, and “mixture of experts” systems combine multiple independently trained models and route inputs to the 
model with the most relevant expert characteristics (C4AI 2024).  
15 OpenAI released the AI agent “Operator,” which has the ability to use its own web browser to perform tasks 
(OpenAI 2025a). 
16 An example of something that could be “detectable” and also less than “significant” would be a 10% increase on a 
single dimension like accuracy, completeness, or other key technical or operational dimensions. 
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reach substantial levels. This is typically what responsible scaling policies and similar 
policies are designed to do. 

● Use Best Practices in Dual-Use Capability Evaluation 

Thresholds are only meaningful in the context of a rigorous capability evaluation process. These 
processes should include reasonable good-faith use of best practices, including: 

○ Enough relevant scenarios (CBRN agents and materials, threat-actor capability levels, etc.) 
to sufficiently sample the space of key scenarios; 

○ Deploying diverse assessment methodologies (Pfohl et al. 2024); 
○ Large enough participant sample sizes; 
○ Red team access to versions of models that do not require jailbreaking; 
○ Methods to assess a model’s capabilities for situational awareness, sandbagging, or other 

capabilities for deception that could lead to evaluators underestimating a model’s CBRN, 
cyber, or other dual-use capabilities; 

○ A red team’s ability to perform reasonably foreseeable capability enhancements, such as 
plugin tools (especially for cyber) or fine-tuning (especially for CBRN), either to remove 
safety filters or to add capabilities by training on domain specific corpora, such as on 
CBRN; 

■ This is important for closed-release models that will be released with fine-tuning 
access, and especially important for models intended for open weights release for 
which fine-tuning will be especially easy; and 

■ Cyber capabilities evaluation can and should include plug-in tools and scaffolding 
(see, e.g., Phuong et al. 2024). 

 
Risk Assessments 

Using “risk scenarios” or other similar approaches as detailed in Section 2.3, intolerable outcomes from 
model capabilities can be characterized through the various types of harms they may cause and their 
potential magnitude of impact. Additional methodologies that may prove useful in assessing these harms 
are discussed in the “Beyond Safety Evaluations” segment, below. 

Quantifying Impact and Likelihood  

● Range of Harms: Potential impacts of frontier models can be used to determine the intolerability 
of risks if there is consensus on the metric of evaluation.17 For instance, if we choose to 
characterize intolerable risks by measuring their impact on the “quality of life,” instead of the 
“number of human lives lost,” our appetites for risk may differ significantly. The calibration of 

 
17 Metrics for the evaluation of impacts include, but are not limited to- physical injuries, number of casualties, 
disruption and destruction of infrastructure, property and/or environmental damage, privacy breaches, discrimination 
and oppression, threats to human rights, deterioration of democratic norms, erosion of trust in society, etc.  
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severity levels can also benefit from domain- or application-specific efforts to determine the types 
of harms; for instance, Khlaaf et al. (2022) demonstrate the range of harms that can arise from the 
application of AI in code generation. 

● Severity of Harms: Potential AI harms need to be systematically mapped across critical 
domains like healthcare and law enforcement, creating standardized scales (to the extent 
possible) that quantify severity levels for disparate impacts (e.g., loss of life, property damage, 
and economic disruption). These scales must map the potential extent of the severity of these 
harms (e.g., 10 to 10 million deaths, one million to many billions of dollars in property damage) 
through a graded scale (e.g., 0-10 deaths, 11-100 deaths…). For an operationalized example, refer to 
the severity scales tabulated in the CSET harm taxonomy (Hoffmann and Frase 2023). These scales 
can also be defined for specific sectors or types of harms, to calibrate the inherent uncertainties in 
risk estimation more reliably. (Additional methodologies that may prove useful in assessing these 
harms are discussed in the “Beyond Safety Evaluations” segment, below.) 

○ Additional Considerations: Other risk sources must also inform the estimation of likelihood of 
intolerable risks. Take, for example, the criteria that inform the designation of general purpose AI 
(GPAI) models with systemic risk in the EU AI Act. These include:  

■ The number of parameters of the model;  
■ The quality or size of the data set, for example measured through tokens;  
■ The input and output modalities of the model; 
■ The size of its reach (e.g., if it will be made available to at least 10,000 business users); and  
■ The number of registered end-users. 

Beyond Safety Evaluations  

● Social Impact Evaluations: While organizations have expressed commitment and rolled out 
promising efforts towards technical model evaluations, there is a concurrent need to complement 
these assessments with a holistic evaluation of harms posed to social systems. Solaiman et al. 
(2024) provide detailed recommendations on the need for social impact assessments on both a 
model’s capabilities and its subsequent interactions in the context of its deployment.  

● Safeguarding Fundamental Rights: It is equally important to evaluate harms posed on 
fundamental rights.These rights include the right to decent work and standard of living, privacy and 
personal security, and freedom of thought, which could come under threat in the long term from 
automation or overreliance (UN 2023).  

● Centering Impacted Communities: Engaging proactively with vulnerable populations and 
advocacy groups would be critical in co-determining the anticipated exacerbation of systemic risks 
by AI.  

● Prioritizing Risks Based on Defense-Readiness: Intolerable-risk thresholds also should reflect 
the degree to which technical and societal mitigations are feasible. For initial operationalization of 
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intolerable-risk thresholds, it may be appropriate to focus first on risks with fewer available and 
feasible defences.18  

● Risk-Benefit Tradeoffs: Intolerable risks are absolute, and we do not see any justifiable benefit 
that can deter any and all reasonable efforts to avoid their impacts. However, as precursors to 
approaching intolerable risks, regulators must provide guidance on weighing the potentially 
substantial risks of frontier AI models against potentially substantial benefits.19 In some cases, 
tradeoffs will be tied to relative gains to offensive and defensive capabilities.20  

Identifying “Intolerable” Risk Levels 

○ Likelihood x Impact: Through the quantitative and qualitative estimates of AI harms 
through the aforementioned techniques, and modeling the risk tolerance for different risk 
actors and their subjective assessment of outcome likelihoods (see Appendix A for more), 
we can identify “intolerable” levels of risk. The Probabilistic Risk Assessment (PRA) 
framework for frontier AI, as outlined by Wisakanto et al. (2025), is one such approach, as 
it provides a multidimensional risk matrix to map estimates of the severity of rapidly 
escalating and cascading harms, as well as the likelihood of impacts, to identify 
corresponding risk levels. This analysis examines both direct and indirect risks to 
individuals, society, and the biosphere. The PRA is a highly useful methodology, but using it 
to the exclusion of other methods may lead to a one-sided focus on only those dangers 
that can be assigned meaningful probability estimates.21 Such systematic approaches can 
be adopted to produce detailed reports of identified risk levels, enabling regulators to 
establish intolerable risk thresholds across different types of harm. For governance 
purposes, industry actors must demonstrate that their AI models operate within these 
established risk thresholds (Wisakanto et al. 2025). 

○ When coining risk thresholds, their strictness must be commensurate with the number of 
risk scenarios and types of harms considered (fewer types analysed leads to stricter 

 
18 For example, new physical defenses against CBRN attacks are often harder, more expensive, and more time-intensive 
than software patches against cyber attacks. Thus, it may be appropriate to define a bright line earlier for CBRN than 
for cyber, where it may make sense to take a more adaptive approach. 
19 This could help in the creation of a record of all explicit underlying assumptions about AI evaluations to inform 
decisions to halt or continue development (Barnett and Thiergart 2024). 
20 However, these comparisons must confront the growing predictions of offense-defense balance skewing towards 
offense in increasingly complex AI models (Shevlane and Dafoe 2020). For instance, developing AI capabilities to 
defend against cybersecurity threats is more promising than developing biological capabilities that are more likely to 
have a longer timeline to provide satisfactory defensive uses and be at risk of malicious use in the short term. 
21 The PRA is widely used in high-impact fields but does not question the underlying hazards being analyzed or 
sufficiently address the uncertainties inherent to its processes. However, the PRA’s strength in dealing with 
unavoidable hazards, when used in combination with other ex-ante methods (e.g., the ‘inherent safety’ principle which 
specializes in hazard elimination) can help formulate a more optimal risk assessment approach (Johnson, 2000). 
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thresholds) and the time period for them to manifest (the shorter the time, the stricter the 
threshold) (Koessler et al. 2024).  

The role of regulators in establishing intolerable levels of risk across the different types of harm in such 
frameworks is discussed in more detail in the following segment. Appendix C presents a further curation of 
best practices that can be considered alongside the contents of this section.  

3.2. Codifying Thresholds into Regulations 

As we elaborate in Section 2 and Appendix A, risks and their estimations are subjective, and often depend 
on the nature of the stakeholder, as well as unique cultural and societal notions of risk. Industry self-
regulation has demonstrated inadequate capacity to comprehensively evaluate and mitigate potential 
systemic harms. Therefore, it is imperative that regulatory bodies establish comprehensive risk assessment 
frameworks to guide better governance. A recent study surveying AI experts also surfaced intolerable-risk 
thresholds as an important component of governance and regulatory frameworks to effectively mitigate 
systemic risks, but 51-78% of the experts agreed on the need for such thresholds to be set by third 
parties (Uuk et al. 2024). While acknowledging the difficulties in operationalizing risk thresholds, almost 
97% of experts thought that triggering an immediate halt in the development or deployment of frontier 
models when these thresholds are breached, is certainly technically feasible. 

Efforts to establish risk tolerances cannot be left to industry actors alone because the appetites 
for risk tolerance and the priorities of public safety vary vastly between sectors, types of institutions, and 
even countries. For instance, infrastructure damages that richer countries could afford may cause a 
catastrophic level of harm in some other contexts,22 or disparate performance for different subpopulations 
may cause deep resentment and loss of trust in institutions, depending on the peculiar histories of their 
treatment. 

An Affirmative Safety Regime  

Establishing intolerable risk levels will be critical in enacting a strong AI governance regime. Setting explicit 
thresholds can incentivize rigorous evaluations and responsible innovation from developers to ensure 
compliance through proactive demonstration of model safety. Clymer et al. (2024) provide a robust 
adaptation of learnings from other industries, and delineate a structured framework for “safety cases” 
that developers can demonstrate for their frontier models. By requiring detailed documentation of 
capability assessments, mitigation strategies, and empirical performance across diverse scenarios, this 
approach shifts the burden from identifying failures post hoc to proving safety through evidence-
backed analyses and structured arguments that foster developer accountability (Wasil et al. 2024). 

 
22 For example, the effects of climate change impact developing and low-income countries, yet those countries 
produce one-tenth of global emissions (WEF 2023). 
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While state actors establish the severity and appetites of various types of impacts from AI, and provide a 
flexible taxonomy of risk categories to be used interchangeably between frameworks, frontier model 
governance must place the responsibility of demonstrating safety cases on developers. This will require 
building state capacity to evaluate industry claims (e.g., through AI Safety Institutes and domain regulators) 
(Bengio et al. 2024, 2025, Clymer et al. 2024).  

Designing safety cases for general purpose models may not necessarily be straightforward when evaluating 
multiple capabilities, their interactions, and other emergent properties unique to their deployment 
contexts. However, we believe that such an affirmative safety approach could help incentivize 
phased model releases, which could enable reliable oversight. This may also create healthy competition 
between frontier model developers vying to create comprehensive safety cases in business critical domains 
to demonstrate product safety and minimize customer liability, spurring further innovation in developing 
better safety techniques. 

Although it is fairly likely that these responsibilities will continue to be cast on downstream deployers, 
market forces can prompt frontier model developers to invest in creating easily adaptable 
evaluation frameworks to enable downstream deployers to test safety cases in their application area. 
This could also help improve responsible model adoption through easing the regulatory burden for 
downstream providers. 

3.3. Limitations 

Identifying thresholds for intolerable risks is one component in enabling AI safety. However, as the Frontier 
AI Safety Commitments stipulate, there is a simultaneous need for organizations to assume concrete 
accountability in developing and governing AI systems transparently, as well as allocating sufficient 
resources to catalyze the development of robust technical tools and techniques to measure and mitigate 
risks.  

● Supervised fine-tuning can fail to elicit capabilities: Advanced systems may be able to 
“resist” fine tuning to conceal their capabilities, or use strategies not included in the supervised 
fine-tuning data to accomplish proxy tasks. Additionally, fine tuning data may lack sufficient quality 
or diversity, and optimization failures may occur (Clymer et al. 2024).  

● Status quo risks cannot be the aspiration: To approach sound empirical analyses of model 
capabilities against thresholds, it is necessary to determine baselines of human performance, other 
state-of-the-art models, and human-AI systems (UK AISI 2024). Inspired by the threat modeling 
approaches from computer security, Kapoor, Bommasani et al. (2024) propose to determine 
empirically sound model evaluation by introducing a framework to assess the marginal risk 
introduced by foundational models when measured against the baseline of existing threats and 
defenses for a particular type of risk. However, it is important to note that the existence of 
unmitigated risk in any domain cannot be a sufficient rationale to excuse a similarly risk-
prone approach in evaluating model capabilities. 
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4. Threshold Recommendations 
The following table attempts to provide further rationale and evidence for the intolerable risk categories 
identified in Section 2.1. The proposed thresholds and recommendations accompanying them are meant to 
address a subset of risks in each risk category, and are not intended to prevent the full range of intolerable 
outcomes under each risk category. For instance, for the “Deception” risk category, we recommend a 
threshold for the specific risk of evaluation deception, but intolerable thresholds for other deception risks 
such as structural effects (e.g. persistent false beliefs, political polarization, enfeeblement, anti-social 
management trends—see Park et al. 2023) would also have to be developed to cover a broader range of 
intolerable outcomes under the deception risk category. 

Operationalization of Proposed Thresholds 

In ideal real-world operationalization of these thresholds, the recommendations in the final column 
will be further supplemented and/or strengthened with an explicit articulation of risk tolerance, and 
accompanied by likelihood estimations, in-line with our recommendations in Section 3. The following 
are some examples of further operationalizing thresholds: 

● “Model use by threat actors leading to a significant increase in misinformation spread with an 
increased reach rate of x% and engagement metrics crossing the y% threshold” (or)  

● “Autonomous development and execution of research and developments accelerating ML 
development by y% with a corresponding z% increase in the likelihood of loss-of-control 
scenarios.” 

In the face of several uncertainties that plague capability and risk evaluations, we design these thresholds at 
a conservative level to err on the side of caution. Additionally, not all thresholds warrant an immediate halt 
in development or deployment, but may instead trigger the need for greater risk management measures. 
For instance, novice actor access to knowledge of CBRN weapons may appear as a tolerable risk if the 
likelihood of success in deploying them is near zero (given the impossibility of accessing CBRN material, for 
example). However, in the absence of these reliable risk estimates, we set these thresholds at a 
conservative level. Similarly, while self-replication can be a red line for model autonomy, the threshold itself 
must be set several levels prior to this point to ensure an adequate margin of safety.  
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Table 1. Proposed Threshold Recommendations for Selected Risk Categories  

Risk Category Rationale for Inclusion and 
Outcomes of Concern 

Evidence  Intolerable Risk 
Thresholds 
Recommendations  

CBRN 
Weapons 

Frontier model knowledge of 
Chemical, Biological, Radiological, 
and Nuclear (CBRN) materials can 
result in catastrophic accidents to 
human health and safety, or be 
misused by adversaries with 
varying levels of domain expertise, 
resulting in mass casualties, large-
scale infrastructure damage, or 
long-term environmental damage.  

For example, deploying frontier 
models toward creating protein 
sequences for toxin synthesis for 
biowarfare. 

Models have already shown 
capabilities related to CBRN 
weaponization such as escalating 
conflict (Rivera et al. 2024), CBRN 
operations (JCS 2018), and semi-
autonomous planning of complex 
chemical reactions (Boiko et al. 
2023b). 

Model is substantially more 
useful23 than baseline sources 
(internet archives, scientific 
literature, technical manuals) 
for providing information, 
planning, and execution 
support for malicious CBRN 
weapon use. 

 

Cyber 
Operations 

AI systems can assist bad actors in 
the planning and execution of 
cyber attacks, or improve 
technical or operational efficiency 
across attacks, for example by 
using social engineering tactics to 
successfully commit fraud. 

For example, AI-enabled cyber 
attacks can compromise critical 
infrastructure, national security, 
and personal privacy on an 
unprecedented scale. AI models 
may also cause major security 

LLMs have demonstrated the ability 
to assist in cyberattacks (CPR 2023).  

Code generation models have been 
successfully used to change malware 
so that it is not detected by analysis 
tools (Hu et al. 2024).  

Circulation of malicious LLM 
applications for cyber attacks and 
scams in underground marketplaces 
(Lin et al. 2024). 

Model possesses sufficient 
expertise and ingenuity to 
assist in the creation of novel 
and/or highly sophisticated 
attacks.  

Model capabilities across 
knowledge, tool use, and ease 
of access shift tactics, 
techniques, and procedures 
(TTPs) of threat actors, 
outpacing cyberdefense 
development. 

 
23 Assessments to estimate increases in CBRN capabilities can be obtained through an expert judgment-based rating 
approach and or statistical-significance test, which can be part of "human uplift" and/or "red teaming" evaluation 
approaches, as proposed in Section 3 and developed in Section 5. Examples of this can be found in Patwardhan et al. 
(2024) and Mouton et al. (2024). 
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Risk Category Rationale for Inclusion and 
Outcomes of Concern 

Evidence  Intolerable Risk 
Thresholds 
Recommendations  

incidents, model/system failures, 
and systemic harm due to model 
misalignment or malfunction. 

The use of AI for technical and 
operational assistance by advanced 
persistent threat actors (MTI 2024).  

Looming reality of AI access 
contributing to global ransomware 
threats (NCSC 2025). 

Model capabilities improve 
the efficiency and/or 
effectiveness of cyber 
operations for previously 
unaffected targets, 
significantly changing the 
threat landscape by 
introducing new targets. 

Model 
Autonomy 

AI systems with high levels of 
autonomy can make decisions and 
take actions without human 
oversight. In critical domains, such 
as military operations, 
autonomous vehicles, and 
infrastructure management, the 
loss of human control could result 
in accidents, escalation of 
conflicts, disruption of essential 
services, or other actions that do 
not align with human ethical 
standards or societal values. 

For example, deployment of fully 
autonomous offensive weapon 
systems that can select and 
engage targets without human 
intervention, leading to 
unintended casualties and 
potential violations of 
international humanitarian laws. 

Research has shown agentic systems 
that use frontier models as central 
controllers are increasingly capable 
of autonomous design, planning, and 
performance of complex scientific 
experiments (Boiko et al. 2023a). 

OpenAI reports that the o3-mini 
model demonstrates “potential for 
self-improvement and AI research 
acceleration” (OpenAI 2025b, p25). 

Model executes open-ended 
machine learning (ML) tasks 
that would contribute to 
critical steps to model 
improvement24 (OpenAI 
2023b, Anthropic 2024).  

Model is capable of self-
replication or self-exfiltration 
(Russell 2024, OpenAI 2023b, 
Anthropic 2024), 

Model capabilities can be 
leveraged to develop 
offensive lethal autonomous 
weapons (LAWs). 

Model substantially 
accelerates R&D in AI, 
robotics, or other sensitive 
domains (Karnofsky 2024). 

 
24 This does not necessarily demonstrate the ability to continually improve over time. Many models may be bounded, 
or restricted by limited access to resources (OpenAI 2023b). 
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Risk Category Rationale for Inclusion and 
Outcomes of Concern 

Evidence  Intolerable Risk 
Thresholds 
Recommendations  

Persuasion 
and 
Manipulation 

AI-driven manipulation through 
targeted disinformation or 
propaganda can undermine 
democratic processes, social 
cohesion, and individual 
autonomy, leading to societal 
destabilization.  

For example, covert and 
personalized interactions can be 
used for radicalization and 
recruitment into extremist 
ideologies. 

Microtargeting and manipulation 
through personalized persuasion 
strategies have been demonstrated 
at scale (Simchon et al. 2024, Salvi et 
al. 2024). 

Successful political persuasion on 
critical policy issues through AI-
generated messages has been 
demonstrated on a diverse 
population of Americans (Bai et al. 
2023). 

OpenAI reports that the o3-mini 
model demonstrates “human-level 
persuasion capabilities and produces 
written arguments that are similarly 
persuasive to human-written text on 
the same topics” (OpenAI 2025b, 
p21). 

AI-assisted attack strategies 
that outpace status quo 
techniques in gleaning 
sensitive information and/or 
cloning identities for 
successful fraud campaigns. 

Model outputs with 
misinformation causing 
immediate severe harms that 
can be further exacerbated by 
accelerated spread  

Deception An AI model that can deceive 
humans about its capabilities or 
plans could present numerous 
catastrophic risks. If a model can 
reliably distinguish between when 
it is running in a training or 
evaluation environment and when 
it has been deployed, then 
accurately measuring the 
dangerous capabilities of the 
model becomes extremely 
difficult or ceases to be possible. 

For example, a model recognizing 
that it is being evaluated 
strategically underperforms on 

Research has shown that models are 
capable of strategic deception (Park 
et al. 2023), safety training deception 
that persists through safety training 
(Hubinger et al. 2024), situational 
awareness (Laine et al. 2024), in-
context scheming (Meinke et al. 
2025), and strategic 
underperformance on evaluations 
(van der Weij et al. 2024).  

Model is capable of 
substantially and persistently 
deceiving its evaluators about 
its capabilities or safety 
properties. 
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Risk Category Rationale for Inclusion and 
Outcomes of Concern 

Evidence  Intolerable Risk 
Thresholds 
Recommendations  

CBRN capability evaluations, 
convincing humans it poses no 
danger in these areas. The model 
is then deployed widely, and it 
successfully assists a terrorist in 
developing and using a weapon of 
mass destruction. 

Toxicity 
(including 
CSAM, NCII) 

Toxicity in AI generated content 
includes content that glorifies 
violence, reinforces harmful 
stereotypes, contains hate 
speech, exhibits aggressive 
behaviors or bullying, or contains 
sexually explicit content or 
sexually violent content.  

Model outputs can include 
hateful, abusive, and profane 
(HAP) content that produces or 
reinforces harmful narratives (IBM 
2024). 

For example, a model’s output 
may contain harmful 
recommendations that lead users 
to take harmful actions against 
themselves or others (e.g., 
recommending that a user ingest 
toxic substances, or encouraging 
users to take their own life, or 
harm others), resulting in serious 
health implications or death 
(Grant 2024, Xiang 2023, McClure 
2023). 

An open dataset used to train 
generative AI models was found to 
contain hundreds of CSAM images, 
and has been used to train models 
that are being used to create photo-
realistic CSAM and NCII (Thiel 2023). 
Models have also been reported to 
encourage harmful behavior. In one 
reported case, a user committed 
suicide after encouragement from 
an AI chatbot (Xiang 2023).  

Model complies with requests 
for generating illegal toxic 
content.  

Model output is strongly 
linked to, or responsible for, 
inciting large-scale physical 
violence and/or violating 
human rights. 
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Risk Category Rationale for Inclusion and 
Outcomes of Concern 

Evidence  Intolerable Risk 
Thresholds 
Recommendations  

Discrimination Frontier models can exhibit 
outputs and behaviors that 
perpetuate harmful stereotypes 
about groups who are frequently 
marginalized, resulting in the 
large-scale exacerbation of biases 
and systemic inequality, especially 
when adapted to high-impact 
domains (e.g., healthcare). 

For example, model predictions in 
credit scoring applications 
contribute to illegal discrimination 
against certain groups or 
subpopulations, causing large-
scale loss of financial 
opportunities for members in the 
group. 

AI literature is rich with evidence of 
model outputs displaying 
discriminatory bias towards 
underrepresented populations and 
marginalized identities (Larson et al. 
2016, Perkowitz 2021, Harve et al. 
2024) that result in significant 
harms25 to quality of life (e.g., 
erroneous prison sentencing, 
wrongful arrests, and inadequate 
healthcare). 

Model evaluations for bias 
exceed acceptable industry 
standards for fairness 
metrics26 and result in a 
substantial disparity in 
outcomes or effectiveness.  

Long-term evaluations:  

Regular algorithmic audits 
that compare outcome rates 
between different 
demographic groups27 to 
identify compounded 
discriminatory effects. 

Socioeconomic 
Disruption  

Frontier AI systems can 
significantly influence global 
economic structures and labor 
markets in ways that raise the risk 
of severe or irreversible harm.  

For example, widespread 

Multiple studies predict that AI-
driven systems could accelerate 
these patterns, with certain regions 
and demographic groups bearing 
disproportionate consequences. 
(See, e.g., implications of a job 

Systems are capable of 
displacing a substantial 
number of jobs without 
adequate mitigations such as 
distributed ownership or basic 
income plans, resulting in 

 
25 These harms are often encoded at a training data level, where attributes tend to reify biases and (mis)represent 
members of certain groups. This could also be reproduced in design choices that sideline under-represented 
populations or altogether ignore intersectionality where data is absent, leading to large-scale discrimination. 
26 An illustrative metric where the score can be designed on a scale of zero to one to represent the composite 
measure of embedded space analysis, response and word association bias, etc. that is sensitive to context. Context 
sensitivity is important because “bias” does not always result in discrimination and can even be used to minimize 
undesirable results. For instance, a positive bias can be introduced to rectify disparate performance stemming from 
historic biases that are codified in training data. 
27 Typically, a ratio between 0.8-1.2 across outcomes indicates minimal significant disparity, but this metric is only 
meaningful if intersectional biases are simultaneously evaluated. Groups can be defined through standardized scales of 
population measures (e.g., micro is <500 people, large-scale is >5000 people), capturing complex identity 
intersections and well defined population boundary markers. 
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Risk Category Rationale for Inclusion and 
Outcomes of Concern 

Evidence  Intolerable Risk 
Thresholds 
Recommendations  

automation of knowledge-
intensive or operational roles may 
lead to sudden shifts in workforce 
demand or severe employment 
displacements. These scenarios 
may undercut social stability and 
amplify inequalities (both 
between and within countries), 
thereby threatening human 
livelihoods. 

application screening model in 
Dastin 2018.)  

In combination, these phenomena 
have raised concerns from 
economists and social scientists 
regarding AI’s potential to 
exacerbate systemic vulnerabilities 
(WEF 2023, Kertechian and El-Farr 
2023, Clifton et al. 2020), especially if 
powerful models are commercialized 
or deployed without calibrated 
safeguards to protect 
socioeconomic welfare.  

large subpopulations 
becoming impoverished with 
no means to subsist. 
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5. Case Studies 
By applying the considerations from Section 3, we elaborate on operationalizing thresholds for some 
intolerable risks in this section through case studies. Each risk in this section is unique in terms of the risk 
sources, the timelines for impact, the nature of harms, and the resulting thresholds, as well as the risk 
management actions they prompt. For instance, CBRN weapons are largely discussed in the context of 
intolerable risks from malicious AI use, whereas evaluation deception may be a more cross-cutting risk 
factor. Misinformation risks, on the other hand, may not always be intentional persuasion campaigns, but 
could still have intolerable impacts from compounding harms (unlike catastrophic events caused by CBRN 
weapons), and therefore must be handled differently.  

5.1. Chemical, Biological, Radiological, and Nuclear (CBRN) 
Weapons 

This category includes risks emanating from the adversarial use of frontier models by actors with varying 
levels of domain expertise to develop novel threats or enhance existing techniques of CBRN weapons and 
deploy them to cause severe harm to human health and safety.  

The UK classifies these as misuse risks emanating from ‘Dual Use Science risks,’ recognizing their potential 
role in scientific research that can bring about benefits to society in addition to harms from misuse. This 
framing also helps to borrow from the rich literature estimating gain-of-function research and balancing 
risks in dual-use scientific research (Rozell 2020). 

Characterization of CBRN Risks in Safety Frameworks 

Anthropic and Google measure CBRN threats based on the model’s ability to help non-expert actors to 
access/produce and deploy CBRN weapons, similar to the broad-based guidance from NIST (NIST 2024a) 
and EU AIA (EP 2024). Google also includes a separate consideration for expert enablement, but all risks are 
exclusively articulated for biological attacks. OpenAI dissects these as distinct capabilities, designating 
model ability to provide (accelerated) access to openly available CBRN information at the lowest risk level. 
The OpenAI risk levels for CBRN progress based on the model capability that can be exploited by amateur 
and expert actors toward developing novel threats, assisting in the creation of threats, and even automating 
the strategy and execution of an end-to-end attack without human intervention. While the framework 
acknowledges risks from capability interaction, it does not explicitly include them when designing 
thresholds. Both NIST and DSIT also recommend specific investigation into the interaction of frontier AI 
models with narrower AI tools specific to certain domains that may increase the likelihood of these risks 
(NIST 2024a, DSIT 2023a).  
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Summary of CBRN Risk Thresholds 

Summarizing these different industry and government policies, the following risk thresholds are 
recommended28 for different levels of risk tolerance: 

● General purpose AI (GPAI) models can significantly accelerate access to expert-level 
knowledge and hands-on techniques that can be synthesized from other publicly available sources 
(internet, textbooks, etc.). These knowledge capabilities can potentially minimize critical skill 
gaps and ‘uplift’ novice capability to exploit specialized information towards malicious use, 
such as developing bio-threats or executing complex attacks (Anthropic 2024, Google DeepMind 
2024, OpenAI 2023b). 

● Models can also enable expert actors to develop novel threats or enhance potency of known 
CBRN materials or agents that can be deployed towards their weaponization.  

● Models can help malicious actors to create, design, develop, and deploy novel CBRN threats and 
end-to-end attack strategies, even lowering barriers for the acquisition and use of CBRN materials 
and weapons.  

● GPAI model interaction with narrower AI model applications in specialized domains can exacerbate 
the potential to create novel threats, engineer weapons, automate production, and operationalize 
deployment (DSIT 2023b). 

Proposed Intolerable Risk Threshold for CBRN Weapons 

In measuring CBRN risks, a common threshold has become the substantial utility of an AI model 
over baseline sources (e.g., internet archives, scientific literature, or technical manuals) for providing 
information, planning, and execution support for malicious use.29  

Evaluations for CBRN Capabilities 

Current frontier models have demonstrated expert-level biology and chemistry knowledge on par with that 
of PhD-level experts, and even outperform them on some tasks (NIST 2024b). However, as of 2023 

 
28 These assessments are listed somewhat in the order of the level of risk the capabilities pose, but their manifestation 
does not have to be necessarily sequential, and therefore neither does their assessment. GPAIs already interact with 
narrow, highly specialized AI tools and models at present, and might display dangerous capabilities before they 
manifest separately in the foundation models . 
29 This estimation of a risk baseline is in line with what Kapoor, Bommasani et al. (2024) recommend in their marginal 
risk assessment framework: establish the risk of identified harms for different populations or domains in the absence 
of frontier model applications. However, it is important to note that the existence of unmitigated risk in any domain 
cannot be a sufficient rationale to excuse a similarly risk-prone approach in evaluating model capabilities.  
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(Mouton et al 2024) when knowledge tests were combined with tasks to measure operational feasibility the 
models fell short, and their assistance with attack execution continues to remain limited (NIST 2024b).  

Nonetheless, dual-use capabilities pose current-day risks. Urbina et al. (2022) found that simple 
modifications to a model created to find new therapeutic inhibitors of targets for human diseases resulted 
in the model generating 40,000 toxic molecules in less than six hours, including new and unexpected 
molecules that were predicted to be more toxic than known chemical warfare agents. This emphasizes the 
need for the prevention of model misuse and the establishing of red lines.  

Owing to the difficulty in reliably measuring catastrophic CBRN events, we recommend the use of human 
uplift studies to determine the likelihood of threat actors misusing such model capabilities by comparing it 
to appropriate base cases.  

Measuring Risk 

One of the main ways to get quantitative estimates of increases in CBRN capability is through an expert 
judgment-based rating approach and/or statistical-significance test, which can be part of "human uplift" 
and/or "red teaming"evaluation approaches. Examples of this can be found in the results section of 
OpenAI's red teaming study (OpenAI 2024a) and RAND's red teaming study (Mouton et al. 2024). These 
human uplift studies are currently most common for CBRN, presumably because determining a risk 
threshold for low-probability, high-impact events commonly associated with CBRN risks is challenging due 
to lack of reliable risk estimates.30 

Sample Uplift Study for Threat Actors with Different Capabilities 

The OpenAI (2024a) human uplift study identified two types of capabilities when testing the model for 
LLM-aided biological threat creation prior to the model’s release, as shown in the table below: 
 

Capability Type Description Example 

Increased Access Increasing malicious actor’s access to 
information and expertise on known 
biological threats. 

Providing a step-by-step guide 
on how to acquire, synthesize, 
and spread Ebola virus to cause 
a pandemic, including how to 
procure reagents and DNA. 

 
30 For instance, a study by Gryphon Scientific estimated that accidental lab releases could cause a global pandemic 
once every 560-13,000 years, potentially killing up to 80 million people. While harder to quantify, they estimated 
similar risks from malicious theft of pathogens, which could occur every 50-200 years. But all these likelihood 
estimations were heavily contested due to the many assumptions made to model such an uncertain event (Rozell 
2020). 
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Increased Novelty Assisting malicious actors in 
developing novel biological threats or 
more harmful versions of existing 
threats 

Providing advice on how to 
modify a coronavirus strain to 
significantly increase 
transmissibility.  

 

Comparing to Appropriate Base Cases 

Typically, CBRN capability evaluations for intolerable risks either implicitly or explicitly compare a model’s 
outputs to information available from Web searches. (See, e.g., Mouton et al. 2024, Patwardhan et al. 2024, 
and Anthropic n.d. on bio domain comparisons, and Dubey et al. 2024 on cyber as well as CBRNE.)31 This 
seems appropriate at the outset, especially when considering risks of models lowering barriers to CBRN for 
the relatively large numbers of potential low-technical capability threat actors that lack high baseline 
technical education or other technical capabilities in a particular domain.  

In addition to comparing a model’s outputs to information from the Web, it also could be useful and 
appropriate to compare a model’s outputs to information from domain-specific textbooks or 
other technical documents that are not available on the open internet, or to evaluate a model’s 
capabilities for lowering barriers to use of biological design tools and/or lab automation functions. That 
would be useful when considering risks of models lowering barriers to especially high-consequence CBRN 
weapons, such as novel or enhanced pandemic potential pathogens, for threat actors with high technical 
capability.32 Additionally as detailed in Section 3, these baselines should also consider unmitigated risks from 
other LLMs. 

Human Uplift Studies 

With these approaches, study participants use information available to them as they carry out CBRN or 
cyber attack-related tasks, such as creating attack operational plans; some participants have access to an 
LLM as well as the internet, and some only have access to the internet. The participants’ efforts are 
reviewed by experts and rated according to accuracy, completeness, etc. Then the data is analyzed to 
assess how much difference there is between groups to see the effect of access to an LLM.  

As mentioned in Section 3, such evaluations must measure several aspects of model capability in the 
context of their deployment to arrive at a reliable measure to demonstrate risk tolerance. A potential 
assessment might be a simple breakdown of the specific CBRN capability under study into its composite 
variables. For example, segmenting capability evaluations into granular aspects like Moral Reasoning, World 

 
31 The October 2024 Responsible Scaling Policy update (Anthropic 2024) specifically mentions information on the 
Web circa 2023. 
32 For more considerations for CBRN and cyber threat modeling, see discussion and references in Section 2 of Barrett 
et al. (2024b).  
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Model Richness, Procedural Knowledge, Agentic Knowledge, Knowledge Plasticity, etc. (Wisakanto et al. 
2025).  

Illustrative Ways to Operationalize Thresholds at “Substantial” Levels 

Building on the evaluation considerations detailed above, we aim to operationalize intolerable risk 
thresholds for CBRN weapons at approximately the “substantial” level in the following section. That would 
be higher than a de-minimis “detectable” level. However, it also could be somewhat lower than at a 
“severe” level; it would be prudent to leave some margin of safety before arriving at a “severe” level.33 We 
also provide a few comments on the general reasoning we used in creating these thresholds, and on how 
they compare to some CBRN model capability evaluation methods and/or thresholds used by industry.  

A foundation model should be regarded as presenting a substantial lowering of barriers to 
CBRN attack, and an intolerable risk, if, for any relevant CBRN attack stage, the model provides any of 
the following, where applicable: 

● For models with CBRN capability effects rated in terms of probability of adversary success in 
carrying out a CBRN attack, if the adversary attempts that attack:34 

○ The model provides an absolute increase in adversary success probability of at 
least 25%.  

■ For increasing estimated adversary probability of success given attempt (where 
that probability is estimated on a 0% to 100% scale), if that is part of the rating 
process. 

● For models with CBRN capability effects rated in terms of attack plan accuracy, completeness, 
or other key technical or operational dimensions:35 

○ The model provides an absolute increase in those dimensions of at least 25%.  

 
33 For comparison, our provisional recommendations are to regard as substantial lowering of barriers an effect 
approximately equivalent to Anthropic’s Yellow Line for CBRN – an 25% absolute increase in accuracy – and to regard 
as severe lowering of barriers an effect approximately equivalent to Anthropic’s Red Line for CBRN – allowing a non-
expert to reach human expert levels (Anthropic n.d.). Note that Anthropic described the Red Line as “substantial 
lowering of barriers”, implying a higher risk tolerance than we recommend. 
34 Pre-release red teaming of Llama 3 included evaluation of the model’s chemical and biological capabilities in terms 
of human uplift effect on adversary probability of success. “....Participants were asked to generate fictitious 
operational plans for either a biological or chemical attack…. Each team is assigned to a ‘control’ or ‘LLM’ condition. 
The control team has access to internet-based resources only, while the LLM-enabled team has internet access as well 
as access to Llama 3 models …. At the conclusion of the exercise, the operational plans generated by each team are 
evaluated by subject matter experts with domain expertise in biology, chemistry, and operational planning. Each plan is 
evaluated across four stages of potential attacks, generating scores for metrics such as scientific accuracy, detail, 
detection avoidance, and probability of success in scientific and operational execution.” (Dubey et al. 2024, p. 47) 
35 Examples of frameworks for, or implementation of, pre-release red teaming of models that included evaluation of a 
model’s biological capabilities in terms of human uplift effect on accuracy of biological attack operational plans 
include: the pre-release red teaming of Llama 3 (Dubey et al. 2024, p. 47; the pre-release red teaming of Claude 
(Anthropic n.d.). 
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■ For lowering of barriers towards an operational plan with sufficient accuracy, 
completeness, etc. to be viable (where such technical or operational dimensions 
are rated using a constructed scale ranging from 0% to 100%, or analogous scales 
that can be normalized to approximate equivalents to a 0-100% scale). 

● For models with CBRN capability effects rated in other terms, in comparison to human expert 
levels: 

○ The model lowers barriers by half (i.e., getting halfway from baseline non-expert 
to human expert levels in evaluations)36 if that represents at least a 10% absolute 
increase (i.e., a greater-than-minimal effect). 

However, these baselines will differ widely for novice and expert actors looking to exploit these capabilities 
for adversarial use, which must be taken into account when evaluating more than one type of knowledge 
capability. Additionally, evaluations of risk should also take into account system, model, and capability 
interactions to determine to reliably estimate risk. 

Risk Amplifying Capability and System/Model Interactions  
 
It is important to evaluate capabilities as a sum of their interaction with other model propensities and 
systems to get a reliable estimate of risk. For example, the risk level of a model capable of providing 
detailed domain-specific knowledge for creating or employing CBRN weapons significantly increases if it 
is able to interact with a second model that is capable of real-world modeling, planning, or reasoning 
(e.g., the ability to create attack plans). For more on CBRN Attack Stages and Potential Effects of AI Dual-
Use Capabilities, see Barrett et al. (2024b).  
 
Alternatively, models with expert-level CBRN knowledge capabilities interacting with model traits like 
persuasion could decrease barriers to AI-assisted execution of adversarial motives, whereas model 
deception could assist in evading reliable capability evaluations, resulting in premature releases with 
insufficient safeguards. Similarly, high-risk capabilities or limitations paired with an agentic model could 
further exacerbate the likelihood of intolerable outcomes and give rise to novel threats not featured in 
tested risk scenarios.  

 

 
36 This would be an example of operationalizing intolerable risk thresholds at approximately the “substantial” level for 
lowering of barriers to CBRN attack, where a model’s human-uplift effect is half of the difference between human non-
expert baseline and human expert. That leaves some margin of safety before arriving at a human-expert or “severe” 
level for lowering of barriers. Leaving such a margin of safety would be prudent, especially for models intended for 
open-weights release that would be easiest to fine-tune, or to enhance in other ways, such as reinforcement learning 
and chain of thought to add capabilities, but that cannot be monitored or decommissioned by the model developer 
through an API. 
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5.2. Evaluation Deception 

Context and Scope 

In their survey on AI deception, Park et al. (2023) define deception as “the systematic production of false 
beliefs in others as a means to accomplish some outcome other than the truth.” Those authors discuss a 
wide range of AI behaviors that could qualify as deception under this definition, including (paraphrased): 
strategic deception, sycophancy, imitation of misinformation, unfaithful reasoning, manipulation, feints, 
bluffs, and cheating on evaluations. They also present at least three types of risks from AI deception, 
including malicious use (e.g., fraud, election tampering, or grooming terrorists), structural effects (e.g., 
persistent false beliefs, political polarization, enfeeblement, or anti-social management trends), and loss of 
control (e.g., deceiving AI evaluators in order to achieve an alternate objective). 

While we broadly agree with Park et al.’s (2023) categorization of AI deception risks, our paper groups many 
of their malicious use risks from AI deception under the risk category of “persuasion and manipulation” 
rather than under “deception.”37  

We focus in this case study specifically on deceiving AI evaluators, which was discussed in Park et al. (2023) 
under the risk of loss of control of AI systems. However, we propose that a model deceiving its evaluators 
would exacerbate not only loss of control risks, but numerous other serious or intolerable risks. In general, 
any risk that is considered to require a capability threshold or is otherwise substantially elevated by a model 
having certain capabilities or (lack of) safety properties would come into play here. An example would be if 
a model deceives its evaluators by sandbagging its advanced and unsafe CBRN capabilities, it is deployed 
broadly, and then the model is utilized by a terrorist to assist them in developing a deadly and highly 
contagious pathogen, causing a pandemic. Hence we consider a model’s ability to deceive its evaluators as a 
sort of cross-cutting intolerable risk, which could result in loss of control of the system or various other 
intolerable outcomes. 

While we focus on deceiving AI evaluators in this case study, we want to emphasize that we do not view 
evaluation deception and its consequences as the only intolerable risks that could result from a model’s 
deceptive capabilities. We suspect there could be intolerable outcomes from other forms of AI deception 
that warrant their own appropriate risk thresholds to mitigate the scale of intangible harms and systemic 
risks (structural effects) that these deceptive capabilities could introduce. 

Evaluation Deception 

An AI model that successfully deceives evaluators about its capabilities or safety properties could result in 
intolerable outcomes across numerous risk categories, as discussed above. But is there any reason to 
expect that such a situation would arise? 

 
37This is largely an arbitrary categorization of risks for the purposes of this paper, and since there is not 
yet a unified taxonomy of AI risks, it should not be interpreted as a criticism of designating such malicious 
use risks under the risk category of “deception,” as Park et al. (2023) have done. 
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One famous example of model deception was an evaluation of GPT-4, which demonstrated model success 
in utilizing a human Taskrabbit worker to solve a CAPTCHA for it under the pretext that it had a vision 
impairment (Open AI 2023a, pp. 55-56). Park et al. (2023) document this and many other examples of model 
deception generally. Considering evaluation deception specifically, Greenblatt et al. (2024) provide “the first 
empirical example of alignment faking emerging and being reinforced by training in a setting that is plausibly 
analogous to future situations with more powerful AI systems.” They demonstrate a production LLM 
engaging in a form of evaluation deception during training. Other recent literature raises alarms about 
current safety techniques being insufficient in adequately mitigating such deceptive behavior once 
identified (Hubinger et al. 2024). 

In addition to “alignment faking”, the other prominent form of evaluation deception is strategic 
underperformance on capability evaluations, otherwise known as “sandbagging” (van der Weij et al. 2024). 
While sandbagging is often considered something that developers would do in order to produce more 
favorable results on a third-party evaluation, it can also be instigated directly by a model, and there have 
been demonstrations of this behavior already (Järviniemi and Hubinger 2024, Meinke et al. 2025). 

Proposed Intolerable Risk Threshold for Deception 

Given the numerous intolerable outcomes that could arise from evaluation deception, as well as the 
plausibility that evaluation deception could arise (e.g., the alignment faking demonstration referenced 
above), we propose the following intolerable risk threshold for deception, centered around evaluation 
deception: 

A foundation model should be regarded as presenting an intolerable risk if the model is 
capable of substantially and persistently deceiving its evaluators about its capabilities or 
safety properties. 

We have a high confidence that model capabilities should not be permitted to cross this threshold. 
However, this threshold is fairly high-level and qualitative, and would need to be quantified and made 
operationalizable in order to be put into practice by developers. In the following sections, we make a lower-
confidence attempt at this exercise, though we suggest regulators primarily rely on the threshold illustrated 
above and consider the following as an illustrative example. 

Deception Detection and its Challenges 

In order to detect deception in foundation models, various black-box techniques, such as consistency 
checks of outputs, are under active research (Fluri et al. 2023, Pacchiardi et al. 2023). Such approaches 
could be particularly useful when attempting to evaluate deception in a model when one does not have 
access to its weights, e.g., when only API access is granted. Greenblatt et al. (2024) also employed a black-
box technique in their alignment-faking demonstration, where they provided the model with a hidden 
“scratchpad” and instructed it to “use the scratchpad to analyze its situation and decide how to respond to 
the user.” Then developers inspected the scratchpad later and observed the deceptive thoughts recorded 
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there by the model. While the scratchpad technique was effective for the alignment-faking demonstration, 
we recommend not depending upon this approach when evaluating more powerful future models which 
could identify that the scratchpad is being surveilled and so avoid recording any subversive reasoning there. 

In addition to black-box techniques, there are white-box techniques under research and development for 
detecting model deception. For the purposes of the evaluation deception, we will assume that white-box 
access will be available, since our scenario is considering a developer’s initial evaluation of their own model 
prior to third-party evaluations and possible deployment. Since white-box access reduces the difficulty of 
the deception problem compared to having black-box access only, we will focus now only on white-box 
techniques, assuming them to be more powerful, and provide this excerpt from Park et al. (2023) surveying 
the literature: 
 
 “Detection based on internals— 

Another approach to detection is to develop an ‘AI lie detector’ that can measure whether the 
internal representations of a model match its outputs. LLMs represent natural-language sentences 
through embeddings, which are long vectors of numbers. Azaria et al. (2023) and Burns et al. 
(2024) have developed methods for determining whether these internal embeddings represent the 
sentence as being true or false. They identify cases in which the model outputs a sentence even 
when its internal embedding of the sentence represents it as false. This suggests that the model is 
behaving dishonestly, in the sense that it does not say what it ‘believes.’” 

Following the above description of techniques, the authors note that “More work needs to be done to 
assess the reliability of these [white-box detection] methods, and to scale them up to practical uses.” 
Representation engineering (RepE) research appears to be promising, but is still in the early phases, and 
would require further research to be scaled up practically (Zou, Phan et. al 2023). 

Situational Awareness as a Measurable Precursor Capability for Evaluation Deception 

Although evaluation deception ultimately poses intolerable risks that we want to detect and prevent, 
methods for direct detection of deception do not seem mature enough to be relied upon in high-stakes 
scenarios. If evaluation deception cannot be reliably detected directly, it begs the question of whether a 
precursor capability could be evaluated instead. One standout possibility is situational awareness. As Laine 
et al. (2024, pp. 33-34) put it, “Knowledge of training processes... including e.g. do they know what’s likely in 
their training data, training data cut-off, types of fine-tuning done on them, etc, seem important for models 
getting hints about whether they are in pretraining, evaluation, etc., which is a prerequisite to deceptive 
alignment or scheming.” 

The Situational Awareness Dataset (SAD) “quantifies situational awareness in LLMs using a range of 
behavioral tests” (Laine et al. 2024). Among other properties, it tests a model’s ability to “determine 
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whether a prompt is from internal evaluation or real-world deployment.”38 This dataset, or other similar 
ones, could be used to evaluate whether a model has sufficient situational awareness to be at risk for 
evaluation deception. 

Preliminary Situational Awareness Threshold for Evaluation Deception 

Earlier we proposed an intolerable risk threshold centered around evaluation deception. Here we attempt 
to quantify and better operationalize that threshold, with this preliminary intolerable risk threshold using 
situational awareness as a proxy for evaluation deception risk: 

Barring strong evidence of alignment, a foundation model should be regarded as presenting an intolerable 
risk of evaluation deception if the model demonstrates sufficient situational awareness to correctly identify 
whether its current environment is evaluation or deployment with 60% or greater probability. 

Rationale: A model with no situational awareness of its environment should correctly distinguish between 
evaluation and deployment environments at most39 50% of the time (i.e., at random). A model reaching 
60% successful identification of its environment has a non-negligible ability to strategically underperform 
(“sandbag,” per van der Weij et al. 2024) or otherwise perform misleadingly on evaluations, including 
situational awareness evaluations. Hence situational awareness needs to be evaluated frequently during 
gradual model training in order to detect possibilities of deception, and if the threshold is reached, then 
scaling should cease and the model should be handled with serious caution, as many types of evaluations of 
the model may now produce untrustworthy results. 

Caveats: Compared to our “Proposed Intolerable Risk Threshold for Deception” further above in this case 
study, this situational awareness threshold should be considered preliminary and lower confidence. The 
evaluation deception issue is complicated by a lack of certainty around the meta-strategy that a deceptive 
model would employ in responding to situational awareness evaluations. The above rationale relies on 
certain assumptions about model behavior, namely that a model would be responding on evaluations to the 
best of its abilities at least until it reaches a certain level of situational awareness, at which point it might 
begin strategic underperformance. But what if a model took the approach of sandbagging on situational 
awareness evaluations even when it knows better? For example, a model could have a policy of always 
answering randomly to questions about whether it is an evaluation or deployment environment, and so 
continue to score 50% on such evaluations throughout gradual training even well after scaling up to highly 
sophisticated levels of situational awareness. Not knowing whether a model might employ a meta-strategy 
such as this, even the 60% threshold proposed above is not without danger. 

 
38 One interesting line of research that might help mitigate evaluation deception risk would be determining how 
prompts and environments can be designed in a way that makes it more difficult for models to distinguish whether 
they are in an evaluation setting or a real-world deployment. 
39Significantly less than 50% successful identification of the environment could indicate a bias or other problem in the 
model or evaluation method. 
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5.3. Misinformation 

In this case study, we attempt to demonstrate intolerable risk thresholds from AI generated misinformation 
which can be categorized under the ambit of ‘Persuasion and Manipulation’ risks in the scope of this 
paper.40 Misinformation risks represent a subset of risks under this category, which in our definition and 
scope also contains risks from disinformation, impersonation, phishing, and other forms of targeted 
manipulation through frauds and scams aided by AI models. Misinformation risks stem from the 
perpetuation of false information that can have large-scale impacts in influencing user opinions and 
perception, resulting in numerous possible harms as well as waning trust in information ecosystems and 
media institutions. 

 It is important to note that unlike other dangerous dual-use capabilities discussed in this paper, 
misinformation risks arise from more meta-capabilities or foundational capabilities that may not prompt 
the same required actions of stalling development or deployment when evaluated. 

Characterizing Misinformation Levels Today 

An argument can be made that misinformation risks emanating from AI-generated content are already 
having a large-scale impact in eroding the quality of information ecosystems, trust in the media, and even 
democratic processes. Since model outputs have been steadily growing in sophistication and complexity 
over time, it has become increasingly challenging to distinguish between factual model outputs and those 
that contain misinformation, both for regular users (Groh et al., 2024) as well as linguistic experts (Casal 
and Kessler 2023). 

A common theme of feedback from literature and AI experts is that such persuasive effects of frontier 
models are already at an unacceptable level (Goldstein et al. 2024). This concern is also corroborated by 
the fact that over 80% of misinformation risks catalogued in the MIT AI Risk Repository are being 
recorded in the post-deployment phase.  

This begs the question, are we already too late in setting misinformation risk thresholds? Less 
than a decade ago, our answer to the question might have been a resounding yes. But with the 
permeation of social media platforms into our daily lives, our risk tolerance seems to have expanded. 
What was our alternative in the absence of robust governance and regulation?  

Impacts from misinformation stand to show us how intolerable outcomes from AI are not necessarily 
futuristic scenarios, but in some cases may be already upon us in the present.41 Misinformation risks also 

 
40 Other taxonomies classify misinformation differently, for instance, ‘Confabulation’ (Autio et al. 2024), Information 
Risks (Uuk et al. 2025), or Harms to individuals through Fake Content in the interim report. All are valid 
characterizations. 
41 Calculating these risks in silos as a function of model capability and consequences alone may already designate them 
at an intolerable level. However, because of both the difficulty in establishing a causal relationship and the powerful 
interventions that currently safeguard the information ecosystem, we still enjoy a few (undeniably insufficient) 
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help demonstrate the need to define and calibrate our risk assessment scales to be attuned to growing 
capabilities, accidents, and impacts several tiers before the “intolerable” level in order to attempt to curtail 
potential harms.  

Differentiating Misinformation and Disinformation 

This case study focuses on misinformation risks that constitute false or inaccurate information that is 
shared without the intent to deceive, rather than disinformation risks from misleading information that is 
deliberately produced to achieve malicious objectives. To better describe our scope, we follow the sub-
domains of misinformation risks based on MIT’s Domain Taxonomy: (i) False or misleading information, 
and (ii) Pollution of information ecosystem and loss of consensus reality. 

This case study aims to provide meaningful guidance towards the operationalization of misinformation 
thresholds by identifying and examining context-based variables that contribute to misinformation risks. 

Characterizing Misinformation Risks 

System limitations that produce false, misleading, inaccurate, erroneous, or nonsensical information in 
model outputs are categorized into distinct risk categories across different risk taxonomies (Slattery et al. 
2024, Weidinger et al. 2022, Cunha and Estima 2023, Deng et al. 2023, Autio et al. 2024). For instance, the 
taxonomies proposed by Slattery et al. (2024) and Weidinger (2023) have dedicated risk categories that 
address misinformation, while others include misinformation under more broad categories of risk such as 
detrimental content (Hoffmann and Frase 2023), information harms (Shelby 2023), and trustworthiness 
(Solaiman 2024). Misinformation harms can result in significant consequences, including pollution of the 
information ecosystem, amplifying societal distrust, inciting violence, and loss of consensus of reality 
(Slattery et al. 2024, Weidinger et al. 2022, Solaiman 2024). Many of these harms can be considered 
intangible (Hoffmann and Frase 2023), with no primary material impacts, making it challenging to quantify 
them. However, literature on the subject has repeatedly traced the role of misinformation as a key catalyst 
in nudging harmful behaviors and swaying beliefs that threaten to erode societal trust in media and social 
institutions. Misinformation risks, especially in conjunction with other intolerable outcomes under the 
persuasion category, for example, micro-targeted disinformation campaigns, personalized phishing attacks, 
AI-driven political manipulation strategies can lead to societal destabilization and erosion of democracies 
(Tran et al. 2020, Wardle and Singerman 2021).  

Unintentionally broadcasted misinformation can still gain immense credibility masquerading as grassroots 
organic content when it reaches sufficient numbers, made evident by the severe polarization of people and 
communities on the subject of Covid19 vaccinations. The MIT AI Risk Repository (Slattery et al. 2024) 

 
protections from the severity of the misinformation harms. Interventions here range from the vibrant civil society 
endeavors (of journalists, fact-checkers, activists) as well as the trailing efforts of media conglomeratesHowever, with 
accelerating model capabilities and AI adoption, these safeguards could prove insufficient if we do not exercise 
necessary caution.  
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documents AI as the entity responsible for 89% of “false or misleading information,” of which 74% is 
unintentional. The same measures for “pollution of information ecosystem and loss of consensus reality” 
have AI entities responsible for 50% of the risks and human actors responsible for 36% of the cases. 

Sources of Model Misinformation 

Unintentional misinformation risks can arise from known model limitations, like model hallucinations, 
sycophancy, and failure of the model to identify and correct adversarial facts.  

● Sycophancy refers to a model’s tendency to adjust responses based on the human user’s 
perspective, regardless of correctness or appropriateness (Huang et al. 2024). While this tendency 
can help align model responses to each individual user, prioritization of user preference over 
correctness can introduce problematic model responses and reinforce confirmation bias.  

● Misinformation can also arise from the model's inability to identify and correct adversarial facts 
(incorrect information in user input) (Huang et al. 2024). Adversarial facts can be introduced 
unintentionally, and if not corrected, can lead to the reinforcement of incorrect, potentially 
harmful beliefs.42 

● Model hallucinations are a well documented phenomenon that have only increased in recent 
times (Arvanitis et al. 2023), and are often defined as misleading, nonsensical, or erroneous model 
outputs (Huang et al. 2024). Model hallucinations can be categorized as input-conflicting (e.g., the 
output does not align with the input or prompt), context-conflicting (e.g., the output contains 
information or elements that are out of context), and fact-conflicting (e.g., the output or generated 
content is factually incorrect) (Gadiko 2024), and are often caused by noisy or insufficient training 
data (Sakib 2024).43  

Mitigation measures often involve reinforcement learning and fine-tuning, content provenance techniques 
(e.g., digital signatures and watermarking), automated content evaluation (Autio et al. 2024, Solaiman et al. 
2024), data augmentation, using retrieval-augmented generation (RAG) to supply external knowledge 
access, encoding refusal behaviors, or simply devolving responsibility to downstream deployers by 
encouraging limitation warnings, etc.44  

 

 

 
42 For example, Khatun and Brown (2023) report that GPT3 agrees to incorrect statements 4.8 - 26% of the time. 
43 Biased, or incomplete training data can cause models to produce inaccurate responses in edge cases or novel 
situations (Sakib 2024). And as stated by Yan et al. (2022, p1) on translation models “In simple terms, hallucinated 
translations are fluent sentences but barely related to source inputs.” 
44 However, operationalizing transparency through refusal behaviors and limitation warnings has been shown to 
characterize an “epistemic humility (in user perception of model capability) that may inadvertently foster 
overreliance.” (OpenAI 2023a) 
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Model Performance 

It is not entirely straightforward or necessary to establish thresholds on the sources of misinformation risk 
described above.45 For instance, hallucinations have been described as an inevitable model trait46 (Xu et al. 
2024) and sometimes even as advantageous, for instance in helping the model characterize “arbitrary” facts 
that cannot be modelled (Kalai and Vempala 2024). Similarly, sycophancy and the inability to correct 
adversarial facts are as much model behaviors as model malfunctions, because in applications that prioritize 
helpfulness over harmlessness, sycophancy can be a crucial trait to drive better user experience. An 
alternative metric to evaluate these risks entails the translation of these model limitations — and 
behaviours like hallucinations and sycophancy — into a composite uncertainty score tied to each model 
output.47  

Model Calibration for Certainty 

These uncertainty scores must be appropriately calibrated to reflect the actual likelihood of model 
correctness in order to be a reliable metric of hallucination (and ergo misinformation) risks. Calibration 
here refers to the alignment between a model's predicted probabilities and the actual correctness of those 
predictions. For instance, if a model assigns 90% confidence to a prediction, that prediction should be 
correct approximately 90% of the time in a well-calibrated system. 

Interestingly, research shows that models that hallucinate less frequently tend to produce lower confidence 
in their outputs,48 similar to how human experts tend to be more aware of the limitations in their 
knowledge. This "confidence-accuracy trade-off" can actually serve as a positive indicator of 
model reliability49 and provide transparent information that helps in making informed decisions about 
design and adoption.50  

 
45 Kalai et al. 2024 demonstrate some techniques to determine a lower-bound on these rates of hallucination, while Xu 
et al (2024) attempt to provide upper bounds for the same. However these are rather narrow statistical frameworks 
that are customized to certain types of facts or architectures, and may not provide a complete picture of model 
limitations or be adapted at scale with ease. 
46 Model training always operates at some degree of abstraction given our inability to model the entire set of ground 
truths from the real world  
47 A known limitation of this approach is the ‘snowballing effect’ of model hallucinations where the model over-
commits to its early mistakes, leading to further ones. Zhang et al. (2023) record how ChatGPT and GPT-4 can identify 
67% and 87% of their own mistakes, respectively. 
48 “Post-training alignment was applied to reduce hallucination (among other factors) but was also found to reduce 
calibration” (Kalai et al. 2024 p.3, OpenAI 2024b).  
49 For further exploration of calibration methods, see Wang (2024), which provides a comprehensive review of 
modern approaches to model calibration. 
50 We cannot view transparency efforts that indicate confidence levels or areas of uncertainty in model responses as 
sufficient standalone risk management techniques when end users are directly involved. Model developers still deploy 
tactics of tonality, hedging, and cautionary disclaimers that only exacerbate overreliance (see footnote 44). User 
perceptions can only be shaped through sincere efforts to avoid such dark patterns in product design (Sandhaus 
2023).  
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Caveats: Although calibration metrics can provide valuable insights, their applicability is often limited by 
deployment conditions that are novel or untested. For example, models trained on general datasets may 
encounter input distributions that are significantly different from those seen during training, known as 
distribution shifts. Current methods, however, can still be employed with an understanding of their 
limitations.51 For instance, approaches like conformal prediction52 may be used to guarantee error bounds 
to uncertainty quantification, but it does not account for distribution shifts. Given these limitations, it 
therefore becomes crucial to disclose sufficient information on the distribution of training data. 
Transparency about training characteristics can empower downstream deployers to refine 
uncertainty scores further. Fine-tuning the model to anticipate and adapt to unique deployment 
conditions can thus help calibrate model predictions and provide reliable estimates of uncertainty. Where 
reliable uncertainty measures cannot be established, another appropriate safeguard, such as explicit 
warning systems and/or model ensembles, should be implemented instead (Rudner and Toner 2024, 
Gawlikowski et al. 2023).  

Risk Assessment and Likelihood  

Modeling risks from misinformation requires not just an estimation of the probability of model outputs 
containing misinformation, but also the likelihood of generated misinformation leading to undesired 
impacts. 

Misinformation Generation vs. Misinformation Impacts  

A model generating misinformation does not necessarily pose misinformation risks on its own. The 
context of model deployment and model use are often what drive misinformation risks. For example, a 
model deployed through an API and used to assist in fictional writing would not be susceptible to risks 
posed by misinformation in model outputs. On the other hand, a model that is used to inform 
consequential decisions (e.g., legal tasks) or one that is deployed in contexts that may foster the rapid 
spread of misinformation (e.g., AI-enabled social media platforms), would be highly susceptible to 
misinformation risks reaching an intolerable level. 

 

 

 
51 For instance, calibration metrics such as the Expected Calibration Error (ECE) and Brier scores can help assess 
model uncertainty. ECE measures how well a model's confidence matches its actual accuracy, while Brier scores 
evaluate the precision of probabilistic predictions by penalizing both over and underconfidence. Alternatively, 
deterministic methods can be employed during model training to flag high uncertainty for specific input types, 
including known adversarial scenarios, to increase robustness.  
52 Conformal prediction, a framework that provides mathematically rigorous uncertainty estimates, works by 
comparing new inputs to a calibration set of known examples, though it is important to note that its guarantees hold 
only when the new data follows the same distribution as the training data, i.e., it does not account for distribution 
shifts. 
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Misinformation Generation  

Evaluating a model’s misinformation levels can be done by measuring the factual accuracy of generated 
output, and by performing reasoning and memory hallucinations tests (Gadiko 2024). It is also possible to 
examine elements of how misinformation may have originated by evaluating the model’s tendency to 
generate misinformation using internal knowledge and external sources, and understanding the model’s 
inclination to hallucinate across different tasks (see Sections 6.1 and 6.2 of Huang et al. 2024). These 
methods can help identify the model’s likelihood of generating misinformation, but for a closer to complete 
picture of estimated risk, it is necessary to estimate the likelihood of its impact (through sufficient reach). 

Misinformation Impacts  

Evaluating the consequences (or impact) of misinformation is a far more challenging task and requires the 
consideration of multiple variables. The evaluations of these recommended variables would likely result in 
estimates that should be transparent in accounting for uncertainty. Appropriate threat models can be 
designed from these variables to determine the pervasiveness and impact of such frontier AI risks. 

● Severity: The severity of misinformation can be derived from the context of model use, and can 
help establish context-based thresholds.  

● Pan et al. 2023 determine one such threat model to determine misinformation pollution, 
which reveals the efficiency of LLMs to act as misinformation generators for malicious use, 
degrading the performance of Open-domain Question Answering (ODQA)53 by up to 87% . 
They extend this to unintentional scenarios of misinformation spread, and demonstrate a 
5% to 15% degradation in ODQA performance. While these findings may be specific to 
ODQA systems, the significant impacts outlined point to its potential to cause a similar 
scale of harm in related scenarios. 

● The reversibility of misinformation impact should also be used as one of the determining 
factors of misinformation severity. That is, irreversible impacts should generally be 
considered more severe than reversible impacts, all other things being equal. 

● Spread: The spread of misinformation can be measured by evaluating the level of misinformation 
reach. Open AI utilizes the Breakout Scale (Nimmo 2020), which categorizes impact on a six-level 
scale (e.g., Category 1: spread within one community on one platform, Category 6: triggers a policy 
response) to assess the impacts of covert influence operations.  

 
53 Open-domain question answering (ODQA) systems must handle queries spanning diverse subjects without 
predefined context or domain-specific rules. Unlike closed-domain systems, which operate within limited subject 
areas, ODQA systems need to address factual questions from any field without having the relevant information readily 
available in their code. 
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● It is important to consider the likelihood of acceleration potential (the speed at which 
the misinformation spreads) in misinformation spread risk assessments. 

● Tracking model use and behaviours by API-level monitoring, especially in tools integrated 
into an existing platform (e.g., social media) can help anticipate potential misinformation 
spread (e.g., the number of active users on a platform).54 

● Additional impact assessment techniques could entail the extrapolation of similar 
analyses measuring misinformation impacts via social media platforms, the extension of 
prevalent surveys examining user perceptions of and trust in AI, scenario-writing (Kieslich 
et al. 2024), etc. 

● Measuring trust in media and information can be used to evaluate the effects of 
misinformation on information ecosystem pollution (Solaiman et al., 2024). 

● Bommasani (2024) demonstrates other similar considerations in delineating different tiers 
for foundation models to appropriately apply regulations.  

Threshold Recommendations 

Proposed Threshold for Misinformation Risks 

Model outputs with misinformation causing immediate severe harms that can be further exacerbated by 
accelerated spread can be regarded as presenting an intolerable risk.  

E.g. Misinformation on vaccines in a pandemic can cause harm to an individual’s health and also result in 
societal harm from contagion, and other secondary harms of economic losses, resource constraints, etc. 
from a lengthening pandemic. 

We recommend using an ensemble of model competence scores and risk estimates evaluated against the 
potential spread of model use to determine application-specific or domain-specific risk tolerances. We 
recommend such a domain specific-approach because misinformation in model outputs that recommend 
instructions to care for house plants might result in harms with lower magnitudes of severity, while similar 
rates of misinformation errors in model outputs for healthcare recommendations could result in more 
severe outcomes. 

 
54 In cases where the model and the platform it is integrated into are owned and operated by the same organizations, 
misinformation spread may be further exacerbated. Proactive measures like automated content evaluation tools must 
be integrated on these platforms. (Eg. Extrapolating Zhou et al. (2023)’s work to identify AI-generated misinformation) 
and should be subject to third party oversight. Such scenarios will also benefit from accompanying governance 
considerations to determine impact. For instance if the platform has over 45 million monthly active users, the EU 
classifies them in the tier of Very Large Online Platforms or VLOPs and accompanying provisions of the Digital 
Services Act must follow (EC 2022). 
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Based on estimates of model uncertainty and risk for an identified deployment context, we recommend 
setting conservative thresholds (with a low risk tolerance) for high-risk model application areas55 (e.g., in 
healthcare diagnostics, or criminal sentencing) where the severity of risk is magnified.56  

For instance, for model evaluation results that show high uncertainty and high risk estimates, we 
recommend that model deployment be disallowed for sensitive applications where the risk-benefit 
tradeoff cannot be justified. These levels can be sectorally established; for instance, in the case of a 
healthcare application, Hjelle (2016) recommends a 95% device reliability score with 95% confidence as a 
common product validation threshold. Specialized thresholds can be established for specific model 
deployments informed by previous precedent that reflect the risk appetites peculiar to the sector. 57 

 

 

 

 

 

 

 

 

 

 

 
55 Model error rates may be susceptible to domain specific regulatory requirements (e.g., the FDA’s medical device 
premarket approval requirements, FDA 2019 ). 
56 Any such applications (including but not limited to diagnostic systems), irrespective of the levels of certainty or 
misinformation, must include and empower humans in the loop to make better decisions. But we want to highlight 
other widespread applications (e.g.,the Google search engine AI overview) which could be doling out incorrect health 
advice that shouldn’t be tolerated (Minsberg 2024). Although recent precedent (Lemley et al. 2023) makes it seem 
unlikely that such models will be held liable citing their (hidden) product warnings as sufficient cause for deniability, 
these legislative/regulatory leniencies do not preclude the resulting risks from being intolerable. 
57 Taking the example of the health sector again, specialized risk tolerance levels may look like the FDA’s 99.99% 
reliability requirements with a 95% confidence for emergency-use injectors, which is equivalent to 1/100,000 chances 
of failure as the requisite safety level. See FDA (2020).  
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Conclusion 
The definition and operationalization of intolerable risk thresholds for frontier AI models are critical steps 
in ensuring the safe and responsible development of frontier models through robust governance efforts. 
This paper provides a comprehensive review of AI risk literature and practical recommendations for 
stakeholders to participate in the threshold setting exercise. However, it is important to recognize that the 
field of AI is rapidly evolving, and our understanding of potential risks and appropriate thresholds will need 
to be continuously updated. 

Moving forward, it is crucial for all stakeholders — including industry, governments, academia, and civil 
society — to collaborate in refining and implementing these thresholds. This will require ongoing research, 
open dialogue, and a commitment to transparency and accountability in AI development and deployment. 
As the competition intensifies in the global AI race, the proactive identification and mitigation of intolerable 
risks will be essential in harnessing the benefits of AI while safeguarding society from potential harms. 
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Appendix A 

Background on Risk Categorizations 

In National Policies: 

US policy introduces “unacceptable negative risk levels” in NIST’s AI Risk Management Framework (AI 
RMF), which defines the highest risk tier prompting immediate cessation in model development and 
deployment. The NIST AI RMF states, “In cases where an AI system presents unacceptable risk levels – such 
as where negative impacts are imminent, severe harms are actually occurring, or catastrophic risks are 
present – development and deployment should cease in a safe manner until risks can be sufficiently 
managed” (NIST 2023, p. 8). 

The analogous nomenclature from the EU AI Act characterizes such risk outcomes as systemic risks 
from high-impact capabilities of general-purpose AI models, having a significant impact on the Union 
market due to their reach (see, Articles 5 and 52 in EP 2024).  

The UK’s International Scientific Report on the Safety of Advanced AI (Bengio et al. 2024, 2025), however, 
introduces a helpful classification of AI risks into three categories: technical risks, misuse risks, and societal 
risks. These categories can be summarized as follows: technical risks, which include system limitations 
and malfunctions like bias and discrimination, confabulation, or design failures; misuse risks, which involve 
malicious activities such as CBRN proliferation or manipulation of public opinion; and finally, societal risks, 
that encompass broader impacts, including IP and copyright issues, environmental and socioeconomic 
harms, and privacy violations, with some risks cutting across these categories. 

All three documents list similar risk outcomes, albeit with distinct terminology. 

From Industry Policies: Misuse Risks and Safety Levels 

Organizational risk management policies stratify capability-based risks into various tiers. In our 
interpretation of risk types and impacts, we see the intolerable risk level emerge well before the highest 
tier/level of risks that they measure against. 

1. In its Responsible Scaling Policy (RSP), Anthropic categorizes capability thresholds as “red 
line” and “yellow line” capabilities (Anthropic n.d.), with corresponding AI Safety Level (ASL) 
standards. Red line capabilities refer to anticipated model abilities that may appear in future 
versions of the model and would present too much risk if deployed under current ASL-2 safety 
measures. Anthropic has committed to developing a new set of ASL-3 safety measures to 
sufficiently manage and mitigate models with red-line capabilities. Anthropic has also defined 
qualitative capability thresholds for specific model capabilities (CBRN weapons, autonomous AI 
research and development, and cyber operations). For example, the CBRN weapon threshold is 
defined as “the ability to significantly help individuals or groups with basic technical backgrounds 
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(e.g., undergraduate STEM degrees) create/obtain and deploy CBRN weapons” (Anthropic 2024 
p.3). According to the company’s internal policies, such capabilities would warrant the application 
of Level 3 ASL or ASL-3 to prevent model misuse (Anthropic 2024). These thresholds are evaluated 
by first conducting a preliminary assessment to determine if a model is “notably more capable” 
than the latest model that has been comprehensively tested. Models that are effectively more 
capable (4x or more in Effective Compute or six months worth of fine-tuning) undergo a 
comprehensive assessment containing threat model mapping for each capability threshold, 
empirical tests for capability evaluation, elicitation testing without safety mechanisms, and 
likelihood forecasting (Anthropic 2024). Anthropic maintains a dynamic risk scorecard that reflects 
pre- and post-mitigation evaluation results for each of the tracked capability categories. The risk 
levels inform Anthropic's decision to enforce certain safety baseline actions based on pre- or post-
mitigation risk scores. For example, models can only be deployed if they are determined to have a 
post-mitigation risk score of “medium” or below.  

2. The OpenAI preparedness framework categorizes thresholds using a qualitative scale (low, 
medium, high, and critical) with definitions for each of their four tracked capability categories 
(cybersecurity, persuasion, CBRN, and model autonomy). The “high” and “critical” categories here 
could be treated as analogous to intolerable levels of threat in model capabilities that require 
heightened risk mitigation efforts or an altogether pause in development (OpenAI 2023b). For 
example, a model that is considered to have a “high” level of cybersecurity capability risk is defined 
as a “tool-augmented model (that) can identify and develop proofs-of-concept for high-value 
exploits against hardened targets without human intervention, potentially involving novel 
exploitation techniques, OR provided with a detailed strategy, the model can end-to-end execute 
cyber operations involving the above tasks without human intervention” (OpenAI 2023b p.8). A 
model’s overall capability score is determined by the highest score in any of the tracked categories.  

3. Google DeepMind’s Frontier Safety Framework (Google DeepMind 2024) outlines model critical 
capability levels (CCLs), which are identified with preliminary model evaluations for various risk 
domains (autonomy, biosecurity, cybersecurity, and machine learning R&D). Each risk domain CCL 
is described and includes the rationale behind the categorization. For example, “bio expert 
enablement level 1” is described as “capable of significantly enabling an expert (i.e., PhD or above) 
to develop novel biothreats that could result in an incident of high severity” (Google DeepMind 
2024 p.5). The safety evaluations based on this framework help the organization to decide on 
security and/or deployment mitigations to address severe risks posed by their models and pause 
deployment/development if the evaluated model capability supersedes the institution of necessary 
risk mitigation levels (Google DeepMind 2024). The model developer states, “The Framework is 
exploratory and based on preliminary research. We expect it to evolve substantially as our 
understanding of the risks and benefits of frontier models improves, and we will publish substantive 
revisions as appropriate” (Google DeepMind 2024 p.6). 
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Across the three examples described above, there is relative consensus as to the key risk categories that are 
considered in determining capability thresholds. All three discuss the general risk categories of CBRN 
weapons, cyber operations, and model autonomy. The OpenAI preparedness framework additionally 
considers persuasion, and notes that their framework includes deception and social engineering evaluations 
as part of the persuasion risk category. Anthropic’s Responsible Scaling Policy includes the footnote, "We 
recognize the potential risks of highly persuasive AI models. While we are actively consulting experts, we 
believe this capability is not yet sufficiently understood to include in our current commitments." 

Taxonomic Fragmentation 

The heterogeneous ways in which AI risks are characterized across different geographies, application 
domains, academic disciplines, and taxonomies appeared as a significant challenge when we began this 
project.  

We began our research on intolerable risks in an attempt to rectify this incoherence in the classification of 
AI harms. This included efforts to both compile existing taxonomies in an exhaustive manner, as well as 
efforts to pick from other risk databases to help define the scope of risks to which our methodology to 
establish intolerable risk thresholds could be applied (Slattery et al. 2024, Zeng et al. 2024, Vidgen et al. 
2024; Weidinger et al. 2022). However, over the course of these efforts to harmonize different risk 
categories, it became increasingly apparent that the distinct taxonomies were not necessarily a 
shortcoming but an opportunity to reconsider the limitations of a centralized framework to approach this 
problem.  

Therefore, we abandoned the search for an elusive universal taxonomy and instead adopted a principled 
approach toward operationalizing intolerable risk thresholds, with an initial set of risk categories that we 
determined to be in scope. We acknowledge the immense benefits of a standardized taxonomy that could 
enable better uniformity and comparability in the risk assessment and reporting exercise for better AI 
governance. However, we also advocate for such a taxonomy to be informed not just by literature but also 
be reflective of the national, cultural, and organizational appetites and attitudes towards risk.  

Risk Entanglements and Subjectivities 

To substantiate our claim about the utility and value of these distinct, sometimes even divergent, 
characterizations of risk, we lean on the unique perspective gathered from applying relational risk theory to 
map risk entanglement. In this work, von Scheve and Lange’s (2023) track how different risk actors (be 
they individuals, institutions, or geographies) may characterize the same risk scenario in entirely different 
ways. They borrow the concepts of risk objects and objects at risk (Boholm and Corvellec, 2011) to 
demonstrate the social and cultural paradigms that shape our understanding of risk. 

Applying this to the risks from frontier AI models, the risk objects would point to the various sources of 
risk, such as model capabilities (autonomy, persuasion, tool access), model limitations/failures (bias, loss of 
control), deployment context (number of users, domain vulnerability), and other model propensities. 
Objects of risk, on the other hand, refer to the impact on valued artifacts, which in AI risks could take the 
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form of loss of human lives, damage to property and infrastructure, socioeconomic losses, etc. Finally, risk 
actors could be identified as frontier model developers, downstream deployers, government actors, end-
users, etc. 

For instance, developers may perceive the risk object of model hallucinations as a hindrance to model 
adoption or brand perception, while downstream actors may find the object of risk as the undisclosed 
nature of training data that limits their ability to reliably fine-tune the model to produce robust results. The 
object of risk for an end-user however, might no longer be related directly to the model performance and 
instead could be more behavioral, like their overreliance on model outputs. For media institutions however, 
the same risk may present a more macro harm in the form of an irreparable poisoning of the information 
landscape or the loss of trust in social institutions. Therefore, we believe that accounting for the 
subjectivity in risk characterization for different risk actors, and sources of risk (risk objects), should be 
central to the risk estimation exercise. 

Building on the relational risk framework, von Scheve and Lange (2023) additionally demonstrate the critical 
process of risk entanglement arising from the unique relationships between different risk actors. 
Commenting on how risk actors relate to each other in a network, they characterize the impacts of the 
framing of risks: 

“For decision makers, a potential harm appears as a risk, whereas for those who 
are affected by the decision, this harm appears as a danger.” 

For instance, AI safety frameworks from industry stratify capability-based risks into various tiers that reflect 
the developers’ appetites for risk. In our interpretation of risk types and impacts, however, we see that 
intolerable risk levels emerge well before the highest tiers or levels of risks that these industry frameworks 
establish. We suspect that governmental agencies and regulators may similarly have divergent views on this 
stratification. We therefore detail our submission to determining intolerable risk thresholds based on this 
dynamic and subjective interpretation of risk without situating them in any one taxonomy, as explained 
further in Section 2.3 and 3.  
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Appendix B 

Types of Thresholds  

Compute Thresholds 

Compute thresholds are often measured with floating-point operations per second (FLOPS). Compute 
thresholds for models when set - (i) above the frontier (currently 1026 FLOPs) would include novel 
capabilities that are difficult to predict, (ii) at the frontier (currently 1025 FLOPs) may already include 
dangerous capabilities, (iii) below the frontier (currently 1024 FLOPs) would be the most cautious 
approach, but may create unnecessary regulatory burdens (Heim and Koessler 2024). However, there is 
also a lack of clarity in the approaches used to measure FLOPs for various types of systems (C4AI 2024). 
Compute thresholds may be most useful as an initial metric to identify models that require further 
regulatory oversight and evaluation, but there are many factors beyond compute that contribute to model 
capability. Enhancing data quality, implementing model optimization techniques, and utilizing novel model 
architectures can lead to increased model capabilities without requiring an increase in model compute 
(C4AI 2024). Algorithmic efficiency improvements can also lead to a decrease in the levels of compute 
required for certain model capabilities, which can be measured by the metric “effective compute” (Heim 
and Koessler 2024). 

Capability Thresholds  

Capability thresholds are the most commonly adopted approach used in AI frontier safety frameworks to 
identify the different risks from specific capabilities and stratify them into different levels based on the 
potential magnitude of impact (as summarized in Appendix A). Because of the dual-use nature of 
foundation models, risk often stems from capability (Koessler et al. 2024). Advanced models may amplify 
societal risks if they are exploited to increase the effective ability of malicious actors to execute attacks, or 
are deployed to autonomously execute attacks (e.g., cyber and CBRN attacks) (Barrett et al. 2024b, UK AISI 
2024).  

Risk Thresholds 

Risk is often defined in terms of likelihood (i.e., the probability of an event), and severity of harm (i.e., the 
magnitude of impact). Comprehensive risk models containing all possible risk scenarios are extremely 
difficult to develop, and it is recommended to start with a limited and defined number of risk scenarios 
(Koessler et al. 2024). Regardless of the risk measurement method, it is important that risk thresholds are 
operationalized and specific enough such that multiple evaluators with access to the same resources would 
agree on the risk threshold determination of an evaluated model (DSIT 2023a). A common proxy used by 
model providers to measure risk is “model capability” (see Anthropic 2024, Google DeepMind 2024). 
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Another common proxy measure for risk is “compute power,” defined in both Executive Order 1411058 and 
the EU AI Act.   

 
58 The majority of this report was drafted and finalized prior to the rescission of Executive Order 14110 on January 20, 
2025. 
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Appendix C  

Best Practices in Model Evaluations 

Boyarskaya et al. (2020) recommend the adoption of dimensions for responsible innovation proposed by 
Stilgoe et al. (2013) to better estimate harmful impacts from AI systems. These dimensions of anticipation, 
reflexivity, inclusion, and responsiveness would be essential features of any robust risk assessment and 
management framework.  

1. Anticipating Risks  

Designing the Right Evaluations:  

In accepting current evaluation practices while determining thresholds, there is an implicit assumption of 
the general reliability of benchmarks. However, model benchmarking and evaluation practices are still 
nascent and sometimes provide insufficient or incorrect estimations of model capabilities. This should be 
improved by:  

● Ensure Construct Validity: It is important to ground model evaluations in use cases and design 
evaluation benchmarks that are curated for specific domains, and designed with input from the 
community. (For examples in practice in legal and medical fields, see Guha et al 2023, Nayak et al. 
2023). 

● Involve End-users: Citing prompt sensitivity as a crucial challenge, Kapoor, Henderson et al. 
(2024) recommend the involvement of end users in the evaluation process to adequately 
determine model capabilities. 

Considerations for Robust Evaluations: 

● Map harms throughout product life cycle: Model risk is accrued at every step of the AI 
development pipeline, from the choice of data labels to the domain of their deployment. It is 
therefore necessary to identify and document the risks at every stage of development to inform 
developer decision-making at each point. The choice of using sensitive personal data in frontier 
models that could be deployed in surveillance technologies must be an explicitly stated choice to 
ensure it falls in line with organizational appetite for risk.  

2. Reflexivity 

Designing sound risk anticipation frameworks for foundational technologies that operate at several layers 
of abstraction or distance from users is ultimately a design challenge. There is a constant need to reassess 
assumptions, state uncertainties, and leave room for unknown unknowns in how we model the trajectory of 
these frontier technologies. For instance, while most forecasting studies take into account the growing 
access to compute capabilities, the decreasing costs of model inference, the anticipated pace of workplace 



 
 

75 

automation, etc., the compounding impact of these distinct effects is not entirely discernable, and 
therefore deployment decisions need to register the sum of externalities to inform every stage of release. 

● Map Harms to Known Algorithms: Language is inherently political and its inherent choices of 
representation hold power over society, thereby bestowing a peculiarity to LLMs that is unlike 
other transformative technologies. Naturally the creation of language models from text corpora 
will stand to mimic the same biases that exist in society. This is a known harm of 
representation/discrimination/bias from NLP and LLM technologies, and its amplification within AI 
models is not surprising (Caliskan 2017, Schwartz et al. 2019). Therefore, applying language 
technologies to domains of high sensitivity, such as psychology or journalism, only exacerbates the 
manifestation of these inherent biases in the absence of due safeguards and fine-tuning. Therefore, 
applications of algorithms with known harms in high-impact domains need to be evaluated against 
stricter thresholds, as opposed to, say, their application in e-commerce recommendations.  

○ Decentralizing decision-making and sufficiently adapting design by including end users 
and affected stakeholders before choosing to deploy these models would be crucial in this 
juncture. However, participation needs to be preceded by appropriately familiarizing these 
groups to known harms to elicit their informed perspective.  

○ Acceptable Use Policies (AUP): While somewhat antithetical to decentralizing powers, 
AUPs could be a necessary short-term solution, especially in open foundational models, 
until we design better oversight mechanisms. Klyman (2024) indexes some such 
vulnerabilities by analyzing AUPs from foundational model developers that place 
restrictions on their use towards producing misinformation, generating misinformation, or 
restricting the scale of model deployments, or their application in highly regulated 
industries. 

3. Inclusion 

● Beyond Technical Assessments: 

While the “generality” of frontier models allow for wide applicability, these base models are not 
bereft of values, and neutral technical assessments would therefore be insufficient to evaluate their 
readiness for deployment. While certain types of risks are more amenable to quantitative 
thresholds along vectors such as accuracy, probability, expertise etc., other risks, especially 
systemic risks with longer timelines, require qualitative measures to assess their threat levels. 
Across risk categories however, there must be avenues for assessments to be defined and 
delivered by developers, experts, and impacted communities as appropriate.  

○ Resisting a tech-first approach: As Kapoor, Bommasani et al. (2024) recommend in 
their marginal risk assessment framework, it is necessary to establish the risk of identified 
harms for different populations or domains in the absence of frontier model applications. 
For instance, when training models on data collected from vulnerable populations, 
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developers should ask, what are the risks of breaches to information integrity, and how 
would they be different from data safety without AI application?  

○ Multi-disciplinary approaches to assessment: In order to reliably anticipate model 
interactions in the contexts of their deployment and center all end users, there is a need 
for cross-disciplinary approaches to AI evaluation (Schwartz et al. 2022). Widespread 
application of sociotechnical modalities are an encouraging sign towards such an 
approach; however, such applications need to permeate into industry best practices more 
effectively to improve risk anticipation. Apart from the application of social science 
frameworks, transferring learnings from the fields of cybersecurity, finance, healthcare, etc. 
will also be essential in this mapping exercise. As Khlaaf et al. (2024) postulate, it would be 
necessary to treat models trained on sensitive data with the same restrictions as those 
placed on the data itself.  
 

● Beyond AI Safety  

Community-centric frameworks and participatory approaches to AI evaluation are gaining steady 
reception despite the known challenges in implementing them at scale. However, the ethos of 
inclusive design needs to be operationalized at earlier stages of model development. For instance, 
Mohamed et al. (2020) recommend the application of a decolonial lens to the development cycle 
by canvassing for the adoption of a critical technical practice, or tapping into the emergence of 
more specialized community groups with the technical know-how to empower their communities’ 
needs (e.g., Queer in AI, Indigenous voices in AI, Data Cooperatives. See, Ovalle et al. 2023, Canavera 
2023, Girish and Avery 2023 .). 

Inclusion also needs to extend to fast-digitizing, data-rich countries of the global majority that are 
facing similar challenges to safeguard populations who are relatively recent adopters of digital 
technologies. Apart from the large-scale impacts this imbalance might have on a country’s 
participation in the global digital economy, it is also the most vulnerable groups that often find 
themselves to be the earliest subjects in model deployment trials, with no efforts to ensure 
adequate awareness or require informed consent. There is an urgent need for global majority 
voices to be given a platform in international forums to advocate for marginalized populations that 
will be adversely affected (Png 2022, Qadri 2023). 

4. Responsiveness 

In Barrett et al (2025), we present extensive guidance on risk management and mitigation as an 
accompaniment to the Risk Management Framework from NIST (NIST 2023). Effective risk management 
requires developer’s to coordinate with multiple stakeholders and engage in long-term planning and 
resourcing to mitigate intolerable AI risks. (For further guidance on responsiveness, see FLI 2017, Srikumar 
et al. 2024.) Simultaneous resource and risk planning and allocation need to happen through state actors to 
curb the scale of impact.  
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● Ensure that model releases are preceded by a comprehensive risk mitigation strategy 
that relies on multiple independent, overlapping safety mechanisms to withstand failures in any 
particular defence techniques (Bengio et al. 2024, 2025). 

● Institute AI Security Practices: Robust information security practices need to be established to 
protect product vulnerabilities. These include but are not limited to:  

○ Adversarial Testing: Conduct red teaming and adversarial testing on frontier models to 
identify security risks (e.g., backdoors, AI trojans, or prompt injection attacks), especially 
for models trained on potentially poisoned public data. 

○ Secure Model Weights: Recent research from RAND (Nevo et al. 2024) presents detailed 
recommendations for securing frontier model weights across five defined security levels 
(SLs). For further guidance, see Measure 1.1 in Barrett et al. (2025). 

○ Privacy and Data Protection: Identify memorization and ensure contextual integrity 
when using sensitive data or PII to train models. See Section 3.5 of Solaiman et al. (2024). 

● Maintain Transparency: As mentioned in the overarching comments in Section 3.1., documented 
risks and decisions should also be reported transparently to concerned stakeholders. 

○ Communicate Limitations: Having documented extensively all known risks from the 
product, it is necessary to paint an honest image of model capabilities so as to encourage 
end user deliberation on model outputs. This could range from adopting bright patterns in 
product design (Sandhaus 2023) or recommending extensive responsible practices and 
acceptable use policies for downstream deployment.  
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